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Final verification framework (This is a public redacted version of a confidential deliverable.) D3.3

Abstract

The InVID project has come to its conclusion. The tools and technologies that we have been de-
veloping, integrating, and testing during the previous years are now in their final form. Work Package 3
has provided an array of tools, integrated in a powerful platform, which aims to provide journalists and
investigators with enhanced capabilities in verifying news-related user-generated videos. The previous
two deliverables of the Work Package, D3.1 and D3.2, described the tools that were developed, the
state-of-the-art algorithms and technologies that were implemented, adapted, and improved, the user
feedback that was received and the way it shaped the component development, and the status of inte-
gration at the end of the first and second year respectively. Here, we present the final versions of the
components and services, the achieved improvements in algorithmic and service performance, and the
final integration status. Through their integration with the Verification Plugin and the Verification Applica-
tion, these components of InVID have been seeing increasing real-world usage since the second project
year, and an increased uptake in the third year. Compared to the previous year, all components have
seen substantial improvements. Our work in Video Forensics remains confidential and the correspond-
ing content has been redacted from the document. However, our progress in the other components is
presented here openly, taken verbatim from the original, confidential version of D3.2.

— Our work in Video Forensics was geared towards automated or semi-automated video analysis.
Besides our confidential work we also produced openly published research, in which our previous
year’s work into convolutional neural networks for tampering detection (i.e. taking the filter outputs
and returning a single-value result on the probability that the video was tampered) was significantly
extended with further models, datasets, and experiments.

— In Near-Duplicate Detection, the algorithm developed during the previous years was further im-
proved, leading to an approach that further surpasses the state of the art in accuracy. This is
achieved by combining the proposed Deep Metric Learning approach with a Chamfer Distance
metric to exploit the distances between video frames during video similarity calculation. We also
completed the development of a very large-scale dataset which allows for realistic evaluations of
Near-Duplicate Video Retrieval algorithms, and also enables evaluations in Fine-grained Video
Retrieval tasks. Furthermore, several improvements and extensions were made in the service
functionalities according to the obtained feedback.

— The Logo Detection module was improved by replacing it with a more reliable deep learning frame-
work, extending its coverage with user submitted contributions, and improving its performance by
adapting and extending the synthetic training data generation process with further training data
augmentation steps.

— The Location Detection module was further improved in terms of accuracy through the inclusion of
several disambiguation steps that reduce the number of errors and lead to increased performance.
Furthermore, our efforts to provide a more reliable evaluation dataset and methodology have led
to the development of an entire ecosystem of tools for the integration of the Recognyze tool but
also for performance evaluations.

— Finally, the Context Aggregation and Analysis module was extended with new functionalities, and
underwent improvements with respect to speed, reliability, and the structure of the provided infor-
mation. In parallel, the increasing user base that has been developed during the second and third
year of InVID has allowed us to use this component to significantly expand the Fake Video Corpus
dataset. Combined with the Near-Duplicate Detection algorithm, a large dataset including well-
established cases of fake and real videos was created, including their reposts and near-duplicates.
In the context of the CAA component, the characteristic patterns of this dataset were explored, with
the aim of gathering insights for contextual video verification.

The integration of these components is now complete, having reached a level of seamless interaction
with the InVID platform. Their constant use in operational conditions guarantees that, besides their
achievements with respect to evaluations and benchmarks, these tools are also ready for large-scale
real-world use, providing state-of-the-art performance for real-world video verification.
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1 Introduction

This deliverable presents the progress made during the third year of the InVID project for Work Package
3: Content Verification, and describes the final version of the delivered verification framework. The
objective of WP3 is to develop a set of tools that can assist journalists with content verification tasks, by
speeding up existing manual procedures, through innovative and intelligent software components.

The rest of the document is organized as follows: The remaining of this section provides a summary
of the WP3 achievements during the third year of the project. Section [2| presents our analysis of the
video verification problem, and the final version of the Fake Video Corpus (FVC-2018) dataset, which
comprises several real-world examples of relevance for video verification. The section also analyzes
the role of each WP3 component in tackling the problem, their interrelations, and the progress of WP3
as a whole. The subsequent sections are dedicated to individual components. Section [3| presents
our progress with Video Forensics, Section [4] deals with Near Duplicate Detection, Section [5] presents
the Logo Detection component, Section [f] presents our progress in Location Detection, and Section
presents the Context Aggregation and Analysis component. Finally, in Section[8|we provide an overview
of the work done so far, the overall influence of InVID in the field of video verification, and our estimate
of the future impact of our work.

1.1 History of the document
Table 1: History of the document
Date Version | Name Comment

2018/09/03 V0.1 M. Zampoglou / CERTH Document structure

2018/09/07 V0.11 S. Papadopoulos, V. Mezaris / CERTH | Structure edits

2018/09/12 V0.2 O. Papadopoulou, L. Apostolidis, D. | Context Aggregation and Analysis
Giomelakis, C. Koutlis / CERTH section

2018/09/18 V0.21 V. Mezaris, Y. Kompatsiaris, S. Pa- | Document structure revisions
padopoulos / CERTH

2018/09/28 V0.3 L. Nixon, A. Brasoveanu / MODUL Location Detection section

2018/10/12 V0.4 R. Cozien, G. Mercier / EXO MAKINA | Video Forensics section

2018/10/21 V0.5 M. Zampoglou, L. Apostolidis / CERTH | Logo detection section

2018/11/05 V0.51 V. Mezaris, A. Metsai, K. Apostolidis / | Video forensics section update
CERTH

2018/11/12 V0.6 O. Papadopoulou, D. Giomelakis, C. | Content Verification - Overview sec-
Koutlis / CERTH tion

2018/11/15 V0.7 G. Kordopatis-Zilos / CERTH Near-Duplicate Detection section

2018/11/27 V0.8 M. Zampoglou, A. Metsai / CERTH Video forensics section update

2018/12/05 V0.9 M. Zampoglou, O. Papadopoulou, S. | Proofreading and editing
Papadopoulos / CERTH

2018/12/21 V1.0 M. Zampoglou, S. Papadopoulos, L. | Final version
Apostolidis / CERTH

1.2 Purpose of the document

The document aims to present our work in WP3 during the third year of InVID and to describe the final
outcomes of this work. The Work Package contains three tasks:

— Multimedia forensics, aiming to detect digital manipulations of the video content by examining
the video bitstream (T3.1 - EXO MAKINA, CERTH).

— Near-duplicate content detection, aiming to identify whether a posted image or video has been
reposted in the past (T3.2 - CERTH).

— Contextual verification, aiming to provide information regarding the location and social network
context of a posted item to assist users with verification (T3.3 - CERTH, MODUL).

The purpose of this deliverable is to document the developments for all three of the aforementioned tasks
during the third year of the project, and to provide an overall view of the progress achieved towards the
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WP objectives. The aim of D3.3 is defined as “...the final version of the content verification framework,
following extensive evaluation and testing on top of the InVID platform. The final version will incorporate
improvements and updates based on the results that will have been collected from the last cycles of
testing and evaluation.”

This deliverable presents these extensions and new implementations and their degree of integration
with the platform. They are accompanied with qualitative and quantitative evaluations of the achieved
performance of the new components, with a focus on progress since Year 2. The achievements of this
year include:

1. The extension of the Fake Video Corpus, previously created and extended in InVID, into its fi-
nal version, the Fake Video Corpus 2018 (FVC-2018). The dataset includes a large number of
“fake” and “real” cases and its near-duplicates, allowing for large-scale analysis of disinformation
dissemination.

2. The development of two deep learning algorithms, one aimed at semi-automatic tampering local-
ization, and the other at fully-automated tampering detection. These models take as input the
results of the video forensics filters developed in the previous years of the project and are trained
on datasets of tampered and untampered videos. The tampering localization algorithm produces
binary localization maps, while the tampering detection algorithm produces single value estimates
on whether the video is tampered.

3. An improved near-duplicate retrieval algorithm, reaching superior performance to state-of-the-art
methods, and a large-scale dataset of real-world videos for near-duplicate retrieval evaluations,
also allowing evaluations of fine-grained video retrieval.

4. An improved, fast and accurate TV logo detection algorithm based on an artificial data augmenta-
tion approach combining high performance with scalability to a large number of known logos.

5. A superior location detection algorithm utilizing an array of disambiguation techniques, accompa-
nied by an ecosystem of different components (data, tools) for evaluation.

6. Improvements in the context aggregation and analysis module, including the addition of further
functionalities to provide more powerful contextual analysis. In addition, a second contribution is
an analysis of the distinctive patterns within FVC-2018, and the potential of automatic verification
systems for contextual analysis.

In this document, both the final status of individual components and of the WP as a whole are
presented, and the overall current and future impact of our work during the InVID project is assessed.

1.3 Glossary and Abbreviations

Application Programming Interface (API): In computer programming, an application programming
interface (API) is a set of subroutine definitions, protocols, and tools for building application software. In
general terms, it is a set of clearly defined methods of communication between software components.

Computer Generated Imagery (CGl): This refers to multimedia content (image, video) that is created
exclusively or to a large extent with the assistance of software, i.e. does not depict a scene captured
from the real world.

Convolutional Neural Networks (CNN): In machine learning, a CNN (or ConvNet) is a type of feed-
forward artificial neural network in which the connectivity pattern between its neurons is inspired by the
organization of the animal visual cortex. CNNs are typically applied on visual recognition tasks.

Deep Metric Learning (DML): A machine learning approach based on neural networks, where an em-
bedding function is learned to map items to a new feature space based on the pair/triplet-wise relations
of the training samples in a development corpus.

Deep Neural Network (DNN): A machine learning model consisting of multiple layers of “artificial neu-
rons” or “units”. A modern version of Artificial Neural Networks (ANNs).

Discrete Cosine Transform (DCT): The DCT is a technique for converting a signal into elementary
frequency components.

© InVID Consortium, 2018 6/58
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Fake Video Corpus (FVC): The video dataset created within InVID for the purposes of identifying and
classifying types of fakes, and evaluating various verification approaches.

Image/Video Tampering: This is the act of digitally altering an image or video file either to enhance it
(e.g. improve contrast) or to mislead people by generating false evidence. Tampering is also referred to
as forgery, manipulation or more colloquially as photoshopping.

JavaScript Object Notation (JSON): This is an open-standard format that uses human-readable text
to transmit data objects consisting of attributevalue pairs. It is the most common data format used for
asynchronous browser/server communication.

MPEG-4: This is a method of defining compression of audio and visual (AV) digital data. It was intro-
duced in late 1998 and designated a standard for a group of audio and video coding formats and related
technology agreed upon by the ISO/IEC Moving Picture Experts Group (MPEG).

Named Entity Recognition (NER): This is a subtask of information extraction that seeks to locate and
classify named entities in text into pre-defined categories such as the names of persons, organizations,
locations, expressions of times, quantities, monetary values, percentages, etc.

Named Entity Linking (NEL): This is an extension of the NEL task which seeks to also link the classified
results to the corresponding entries from a Knowledge Base like Wikipedia, DBpedia or Wikidata.

Near-duplicate detection (NDD), Near-Duplicate Video Retrieval (NDVR): This refers to the task of
retrieving multimedia items (images, videos) that are highly similar or identical to a given multimedia
item, which is referred to as query.

Radial Basis Function Support Vector Machine (RBF-SVM): An Support Vector Machine is a super-
vised machine learning model able to achieve non-linear classification through so-called “kernel func-
tions”. Radial Basis Functions are a type of such kernel functions.

Region proposal Convolutional Neural Network (RCNN): A type of Deep Neural Network which takes
an image as input, and returns a number of region proposals and the classification results for each one
of them, thus performing object detection.

Representational state transfer (REST): Also known as RESTful Web services, this refers to a paradigm
of providing interoperability between computer systems on the Internet. REST-compliant Web services
allow requesting systems to access and manipulate textual representations of Web resources using a
uniform and predefined set of stateless operations.

SPARQL Protocol and RDF Query Language (SPARQL): This is an RDF query language, i.e. a
semantic query language for databases, able to retrieve and manipulate data stored in Resource De-
scription Framework (RDF) format.

Speeded Up Robust Features (SURF): In computer vision, SURF is a local feature detector and de-
scriptor. It can be used for tasks such as object recognition, image registration and classification.

Slot Filling or Cold Start Slot Filling (SF or CSSF): Is an information extraction task in which a system
needs to complete (or fill) all the available information on a particular entity. Typically this is done with
respect to a schema that defines the type of information that can be extracted about particular entity
types.

Term Frequency - Inverse Document Frequency (tf-idf): This is a numerical statistic that is intended
to reflect how important a word is to a document in a collection or corpus. It is often used as a weight-
ing factor in information retrieval, but also in the context of image retrieval in conjunction with visual
vocabularies.

Uniform Resource Locator (URL): Commonly termed a web address, this is a reference to a web
resource that specifies its location on a computer network and a mechanism for retrieving it.

User Generated Content (UGC): This refers to multimedia content that is generated by any individ-
ual (i.e. often amateurs) and is publicly shared through some media sharing platform (e.g. YouTube,
Facebook, Twitter, etc.).

© InVID Consortium, 2018 7/58
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Video Forensics: This refers to a class of video analysis methods that aim to detect traces of tampering
in video content.

Work Package (WP): This refers to the structure of InVID work into units called Work Packages.

© InVID Consortium, 2018 8/58
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2 Content verification — Overview

2.1 Content verification in the Wild

The stated aims of InVID have been to provide tools for journalists, news professionals, and investigators,
to gather and verify video with respect to their usefulness in news story production. In the course of the
project, these tools were adopted by a significant part of the verification community, and this began
generating a significant amount of traffic to the InVID services, including those of WP3. This had the
added and unforeseen benefit of in turn allowing us to observe which video items these professionals
were submitting for verification, and through this, which videos were considered newsworthy at the time
that the project was running.

In the two previous WP3 deliverables, we presented two versions of the dataset we collected, named
the Fake Video Corpus. The dataset contained cases of “fake” and “real” videog] that is videos which
were used to spread misinformation, and videos that contained newsworthy UGC that might as well have
been associated with misinformation, but were finally proven to be truthful. In both first versions of the
dataset, we manually selected the videos to populate it, with the help of news professionals from our
InVID partners. For the dataset gathered during the third project year, named the Fake Video Corpus
2018 (FVC-2018) and published in (Papadopoulou, Zampoglou, Papadopoulos, & Kompatsiaris, |2018),
we followed a different strategy, made possible due to the high degree of adoption of the InVID services
by the verification community.

By processing the anonymized logs of the Context Aggregation and Analysis service, which was
serving the highly adopted InVID plugin, we collected a list of approximately 1600 videos that the users
had been submitting during the lifetime of the tool. Since we are dealing with a free and open tool, this
means that not all videos submitted are going to be relevant. Thus, we manually checked all submitted
videos to remove those that were clearly irrelevant (e.g. clips from TV shows, games, etc.), and further
removed all videos that were already present in the Fake Video Corpus. We noted a high degree of
overlap between the videos collected in this manner, and the videos already in the FVC, which is a
good indication that the videos we had been collecting during the first two years of the project are
relevant cases for our user community. The remaining videos after the above culling process were
manually verified using external sources (i.e. credible news sources and debunking websites such as
snopes.com) and classified as Real or Fake similar to the annotation followed in the previous versions
of the Fake Video Corpus.

Following this process, the additional videos were added to the previous version of the FVC, resulting
in a dataset of 200 videos annotated as fake and 180 annotated as real. This collection can help
researchers and the verification community to analyze the phenomenon of video-based disinformation,
and is in itself a significant contribution to the state of the art. Figure [1] shows some cases out of this
collection.

However, using the technologies developed in InVID, we took the opportunity to move one step
further. Specifically, using the near-duplicate retrieval algorithm of WP3, presented in Section[4] we pro-
ceeded to study how information is disseminated through time. To achieve this, we followed a structured
methodology in six steps:

1. For each video in the initial set, extract the title.

2. Simplify the title by retaining only the most crucial information. For example, the title Video Tornado
IRMA en Florida EEUU Video impactante was simplified to Tornado IRMA at Florida.

3. Translate the event title into English, Russian, Arabic, French, and German using Google Translate.

4. Use the video title, event title, and the four translations as separate queries to three target plat-
forms: YouTube, Facebook, Twitter.

5. Use the near-duplicate retrieval algorithm of (Kordopatis-Zilos et al, 2017) to search within the
returned videos, for near-duplicates of the initial video.

6. Apply a manual confirmation step to remove any erroneous results of the method and only retain
actual near-duplicates.

"We recognize that the labels “fake” and “real” oversimplify the problem and have been often misused in the public debate.
However, for the sake of brevity and simplicity, we use them to refer to the annotations of the Fake Video Corpus.
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&

Figure 1: Indicative cases of real and fake User-Generated Videos from FVC-2018. Top: four real
videos. a) A Greek army helicopter crashing into the sea in front of beach; b) US Airways Flight 1549
ditched in the Hudson River; c) A group of musicians playing in an Istanbul park while bombs explode
outside the stadium behind them; d) A giant alligator crossing a Florida golf course. Bottom: four fake
videos. a) A man taking a selfie with a tornado -CGl; b) The artist Banksy caught in action -staged; c)
Muslims destroying a Christmas tree in Italy -out of context, there is no indication that they are Muslim; d)
Bomb attack on Brussels airport -out of context, footage is from Moscow Domodedovo airport in 2011.

7. Temporally order all gathered videos, including the initial one, into a “video cascade”, starting with
the oldest posted video containing all its near-duplicates ordered by publication time.

This led to the creation of cascades of near-duplicate videos, published at different times and with a
varying degree of modifications (Figure [2). It should be noted that, the way that the title was restated in
step 2) intentionally limits the scope of the search. That is, if the initial video was contextually fake, and
the original content was not from hurricane Irma, then the algorithm will only retrieve those versions of
the video that claim to depict hurricane Irma. Thus, the original video which was taken from a different
tornado will not be included in the set, and the cascade will contain all versions of the specific falsehood.
Thus each cascade corresponds to a particular misinformation and does not intend to contain all near-
duplicates of the same video currently available online. This is a necessary limitation, as removing the
search constraints (e.g. searching simply for "Tornado” in order to collect all possible instances of the
same content) would return too many results to handle.

1

A ; A WA |
TRUCK RAMS INTO CROWDED STORE IN
273 PEGPL KALED I TROCK GRASH W STOCRNON

a2
Now
H

Figure 2: Indicative video near-duplicates for two different cascades.

Methodologically, two further steps were applied to extend and refine the dataset. The first was
to submit the URL of the first video of each cascade to Twitter search, and collect all tweets sharing
the video as a link. The second was to study all gathered videos and their context, to ensure they all
correspond to the assigned title. This is important because, for example, when we start with a video
that is contextually fake with respect to the claims made in its description, it is possible that we will also
collect a real version of it containing a truthful description. Since each cascade is assigned a single
"fake” or "real” title, clearly these two videos should not be analyzed as part of the same cascade.

Thus, all videos were re-annotated with respect to the intended class of the cascade they belong
to. The entire process led to the collection of 3,929 fake videos and 2,463 real videos, organized in
200 and 180 cascades respectively. Out of those, we initially excluded 467 fake videos and 350 real
ones, taken from Facebook, since they were listed as private and our access to their metadata was
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restricted. The rest of the videos were annotated with respect to their relation to the initial video in the
cascade. Thus, the categories for near-duplicates of fake videos are: a) Fake/Fake: those that reproduce
the same false claims; b) Fake/Uncertain: those that express doubts on the veracity of the claim; ¢)
Fake/Debunk: those that attempt to debunk the original claim; d) Fake/Parody: those that use the content
for fun/entertainment; e) Fake/Real: those that contain the earlier, original source from which the fake
was made. For near-duplicates of real videos, the corresponding categories are: a) Real/Real: those
that reproduce the same factual claims b) Real/Uncertain, those that express doubts on the veracity of
the claim; c) Real/Debunk: those that attempt to debunk their claims as false; d) Real/Parody: those
that use the content for fun/entertainment. A special category concerns videos labeled Real/Private and
Fake/Private, which describes Facebook videos that were relevant to the dataset but were published by
individual users and thus could not be accessed through the APl in order to extract their context. These
were left out of the analysis entirely. Table [2| shows the number of videos that corresponded to each
category and each platform. The column labeled Total corresponds to all videos, but does not include
the twitter posts that share the video, which are counted separately, and the videos listed as “private”
which are not counted at all. The resulting annotated dataset has been presented in (Papadopoulou et
al., 2018) and is freely available for research purposesﬂ

Fake videos Real videos
YT FB TW  Total TW Shares YT FB TW Total TW Shares

Initial 189 11 0 200 - Initial 158 22 0 180 -

Fake 1,675 928 113 2,716 44,898 Fake 993 901 16 1,910 28,263
Private - 467 - 467 - Private - 350 - 350 -

Uncertain 207 122 10 339 3,897 Uncertain 0 1 0 1 30

Debunk 68 19 0 87 170 Debunk 2 0 0 2 0
Parody 43 2 1 46 0 Parody 14 6 0 20 0

Real 22 51 1 74 0

Total 2,204 1,133 125 3,462 48,965 Total 1,167 930 16 2,113 28,293

Table 2: Types of near-duplicate videos contained in FVC-18. Private videos are not included in the
totals.

FVC-2018, i.e. the final version of the Fake Video Corpus produced within InVID, is, to our knowledge,
the largest annotated research database of misleading and truthful video content currently available. As
a first result of collecting and studying the FVC-2018, we have come to the conclusion that the original
typology of misleading videos that we formed in D3.1, was not fully accurate. Thus, we devised a new
typology as follows:

1. Decontextualized videos that are visually unchanged or almost unchanged, including low quality
copies for clickbait purposes.

2. Decontextualized videos that have also been altered (e.g. cut in length to one or several fragments
of the original video, or cropped to remove e.g. a timestamp in a CCTV camera footage).

3. Staged videos (e.g. produced on purpose by a video producer company).

4. Videos that have been tampered through editing software to remove, hide, duplicate or add some
visual or audio content.

5. Computer-generated Imagery (CGl) including deep fakes (i.e. content generated by Artificial Intel-
ligence) either generated from scratch or mixed with a blend of previous footage.

The distribution of these 5 categories among the 200 initial videos of the FVC-2018 is shown in
Table [3] Although it can be seen that all categories are represented in the corpus, it is clear that CGI
videos are a minority. This makes sense, as it is rather demanding to produce them. On the other hand,
decontextualized videos are the largest category, especially if we add those with minor alterations. It is
also interesting to note that the dataset also contains many staged videos, a number of which have been
also post-processed.

These are the use-cases that we may encounter, and the role of each WP3 component in the overall
verification process should be evaluated with respect to them.

Zhttps: //github.com/MKLab-ITI/fake-video-corpus
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Category # videos
1 — Decontextualized unchanged 77
2 — Decontextualized altered 13
3 — Staged 35
4 — Tampered 38
5-CGl 9
Staged & Tampered 23
Staged & CGl 5
Total 200

Table 3: Types of near-duplicate videos contained in FVC-2018.

2.2 Content verification in InVID

In D3.1 we presented the first version of the WP3 modules, and in D3.2 we presented their improved
versions. In this document, we present their final versions. As the InVID project is reaching its conclu-
sion, and the various components are being evaluated for market application, it would be important to
reiterate the role that each component is aimed to play in the overall verification process, how they are
interrelated, and the overall framework coverage.

For videos that have been digitally tampered or contain CGl, detection can be achieved using the
Video Forensics component. This component includes a set of filters, aimed to be applied on videos and
allow investigators to spot inconsistencies after studying the results. Section |3|presents our progress in
this area, including our efforts to design a system that can automatically classify videos as tampered or
authentic by analyzing the filter outputs, and a system that can take the filter results as input and return
a binary tampering localization map that can highlight where the tampering might have taken place.

With respect to videos that have been published in the past and are being reposted out of context,
with or without alterations, the proposed solution is the Near Duplicate Detection module, which includes
a growing index of videos from past events that may be used as future reposts, and an innovative
near-duplicate retrieval algorithm used to search this index and check whether a video appearing as
new is actually a near-duplicate of a video already present in the index. In Section [4] we present our
improvements on the algorithm and the resulting evaluations, as well as our progress with increasing the
size of the dataset.

In a similar manner of contextual analysis, Location Detection can allow us to detect inconsistencies
in the video context, or to identify details concerning its source, which can be telltale of specific biases.
Section [6] presents our progress in this module and the significant improvements we achieved with
respect to accuracy and disambiguation.

Finally, for all cases of fake videos, analyzing their content as a whole can greatly assist verification,
In Section [7] we present the improvements and modifications of the Context Aggregation and Analysis
component, as well as our analysis of the FVC-2018 corpus with respect to identifying the tell-tale
patterns that distinguish fake from real videos. Furthermore, we present our explorations into automatic
contextual video verification.

2.2.1 Progress and evaluations during Year 3

During the final project year, all modules underwent significant improvements with respect to their fea-
tures, their technologies, and their integrated implementations. Particular focus was placed in the eval-
uations of all components, both qualitatively and quantitatively. With respect to the latter, quantitative
evaluations were run on all modules, using appropriate datasets. While we consider the FVC-2018 to
be a central outcome of InVID, and a landmark in the field of video verification, offering a definitive col-
lection of established fake and real news-related videos and their near-duplicates, it was not the only
dataset used in our evaluations. FVC-2018 was appropriate for the quantitative evaluations of automatic
contextual verification algorithms in the context of the CAA component, but three more datasets have
also been produced as a result of our work in InVIDF|

— The Near-Duplicate Detection dataset presented in D3.2 has been extended and annotated, allow-
ing not only evaluations on Near-Duplicate Retrieval tasks, but also evaluations on Fine-grained
Video Retrieval. The dataset, named FIVR-200K, is presented in detail Section [4]

3More details regarding the data management aspects of these datasets are provided in the updated Data Management Plan.
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— The Logo Detection dataset consisting of a large number of TV videos, presented in D3.1 and
D3.2, and is used again in the evaluations of Section [5] following minor corrections in annotation
and organization.

— The (“Lenses”) dataset, initially created with geolocation in mind but subsequently expanded to
cover events and other entity types as well. It was presented in D3.2.

Besides these datasets that we created ourselves, established benchmark datasets were also used for
quantitative evaluations of the various modules, such as the NIST Media Forensics Challenge 2018 and
the GRIP tampered video dataset used for Video forensics, the CC_WEB_VIDEO dataset used for near-
duplicate detection, and the Reuters-128 dataset used in location detection evaluation. Furthermore, we
tried to use the Fake Video Corpus for evaluations wherever it was relevant -in this document, parts of
it are also used for certain qualitative and quantitative examples of the new Video Forensics algorithms,
besides the automatic contextual analysis benchmark evaluations.

© InVID Consortium, 2018 13/58
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3 Video Forensics

A large part of the work conducted for video forensics during the third year of the project is confidential.
For our published work in this area, we used certain forensic analysis filters for tampering detection, i.e.
with the aim of producing single-value estimates indicating the probability that a video may have been
tampered. The work presented here has been published in (Zampoglou et al., 2019).

3.1 State of the art

Multimedia forensics has been an active research field for more than a decade. A number of algorithms
(known as active forensics) work by embedding invisible watermarks on images which are disturbed in
case of tampering. Alternatively, passive forensics aim to detect tampering without any prior knowledge
(Pival, [2013). Image forensics is an older field than video forensics, with a larger body of proposed
algorithms and experimental datasets, and is slowly reaching maturity as certain algorithms or algorithm
combinations are approaching sufficient accuracy for real-world application. Image tampering detection
is often based on detecting local inconsistencies in JPEG compression information, or — especially in the
cases of high-quality, low-compression images — detecting local inconsistencies in the high-frequency
noise patterns left by the capturing device. A survey and evaluation of algorithms focused on image
splicing can be found in (Zampoglou, Papadopoulos, & Kompatsiaris, 2016).

The progress in image forensics might lead to the conclusion that similar approaches could work for
tampered video detection. If videos were simply sequences of frames, this might hold true. However,
modern video compression is a much more complex process that often removes all traces such as
camera error residues and single-frame compression traces (Sitara & Mehtrel 2016). Proposed video
forensics approaches can be organized in three categories: double/multiple quantization detection, inter-
frame forgery detection, and region tampering detection.

In the first case, systems attempt to detect if a video or parts of it have been quantized multiple
times (Y. Su & Xul [2010; J. Xu, Su, & liu, 2013). A video posing as a camera-original User-Generated
Content (UGC) but exhibiting traces of multiple quantizations may be suspicious. However, with respect
to newsworthy UGC, such approaches are not particularly relevant since in the vast majority of cases
videos are acquired from social media sources. As a result, both tampered and untampered videos
typically undergo multiple strong requantizations and, without access to a purported camera original,
they have little to offer in our task.

In the second category, algorithms aim to detect cases where frames have been inserted in a se-
quence, which has been consecutively requantized (Y. Wu, Jiang, Sun, & Wang, 2014}, |[Zhang, Hou,
Ma, & Li, |2015). Since newsworthy UGC generally consists of a single shot, such frame insertions are
unlikely to pass unnoticed. Frame insertion detection may be useful for videos with fixed background
(e.g. CCTV footage) or for edited videos where new shots are added afterwards, but the task is outside
the scope of this work.

Finally, the third category concerns cases where parts of a video sequence (e.g. an object) have
been inserted in the frames of another. This the most relevant scenario for UGC, and the focus of our
work. Video region tampering detection algorithms share many common principles with image splicing
detection algorithms. In both cases, the assumption is that there exists some invisible pattern in the
item, caused by the capturing or the compression process, which is distinctive, detectable, and can
be disturbed when foreign content is inserted. Some approaches are based solely on the spatial in-
formation extracted independently from frames. Among them, the most prominent ones use oriented
gradients (Subramanyam & Emmanuel, [2012), the Discrete Cosine Transform (DCT) coefficients’ his-
togram (Labartino et al., 2013), or Zernike moments (D’Amiano, Cozzolino, Poggi, & Verdoliva, [2015).
These work well as long as the video quality is high, but tend to fail at higher compression rates as the
traces on which they are based are erased. Other region tampering detection strategies are based on
the motion component of the video coding, modeling motion vector statistics (W. Wang & Farid, [2007;;
Li, Wang, Wang, & Hu, |2013) or motion compensation error statistics (Chen, Tan, Li, & Huang}, 2016).
These approaches work better with still background and slow moving objects, using motion to identify
shapes/objects of interest in the video. However, these conditions are not often met by UGC.

Other strategies focus on temporal noise (Pandey, Singh, & Shukla, 2014) or correlation behavior
(Lin & Tsay, 2014). The noise estimation induces a predictable feature shape or background, which
imposes an implicit hypothesis such as a limited global motion. The Cobalt filter we use adopts a
similar strategy. The Motion Compensated Edge Artifact is another alternative to deal with the temporal
behavior of residuals between I, P and B frames without requiring strong hypotheses on the motion
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or background contents. These periodic artifacts in the DCT coefficients may be extracted through a
thresholding technique (L. Su, Huang, & Yang, |2015) or spectral analysis (Dong, Yang, & Zhu, [2012).
This approach is also used for inter-frame forgery detection under the assumption that the statistical
representativeness of the tampered area should be high.

Recently, the introduction of deep learning approaches has led to improved performance and promis-
ing results for video manipulation detection. In (Yao, Shi, Weng, & Guan, 2017), the inter-frame differ-
ences are calculated for the entire video, then a high-pass filter is applied to each difference output and
the outputs are used to classify the entire video as tampered or untampered. High-pass filters have been
used successfully in the past in conjunction with machine learning approaches with promising results
in images (Fridrich & Kodovsky, 2012). In a similar manner, (Rossler et al., 2018) presents a set of
deep learning approaches for detecting face-swap videos created by Generative Adversarial Networks.
Besides presenting a very large-scale dataset for training and evaluations, they show that a modified
Xception network architecture can be used to detect forged videos on a per-frame basis.

3.2 Method description
3.2.1 Tampering localization

[Content removed as confidential.]

3.2.2 Tampering detection

The work presented here aims at an approach which can take the filter outputs and return a single-value
estimate that the video may have been forged, i.e. a video tampering detection system. The basis of the
approach was this:

1. A video is split into frames, which are processed by a forensic filter.

2. The outputs of the forensic filter, annotated as “tampered” or “untampered” are used to fine-tune a
pre-trained Convolutional Neural Network, in order to separate between the two classes.

3. When faced with a new, unknown video, the process is repeated for all its frames, and the video is
classified as “tampered” or “untampered” by fusing the per-frame estimates.

During the second year, we had tested the Cobalt filter on a modified GooglLeNet model, on a small
dataset of 23 tampered and 23 untampered videos. Building upon the promising results of the second
year, we proceeded to conduct more in-depth experiments. While the essential methodology remained
the same, we extended our effort to more models, filters and datasets.

Specifically, besides the Cobalt filter we also ran experiments with the Q4 filter. Also, for comparison
with the state of the art, we also implemented three other forensic analysis filters, specifically:

— rawKeyframes (Rossler et al.l [2018). The video is decoded into its frames and the raw keyframes
(without any filtering process) are given as input to the deep network.

— highPass frames (Fridrich & Kodovsky, 2012). The video is decoded into its frames, each frame is
filtered by a high-pass filter and the filtered frame is given as input to the deep network.

— frameDifference (Yao et al., [2017). The video is decoded into its frames, the frame difference
between two neighboring frames is calculated, the new filtered frame is also processed by a high-
pass filter and the final filtered frame is given as input to the deep network.

Furthermore, in parallel to the GoogLeNet CNN model, we implemented the ResNet CNN model,
also with the addition of an extra layer which has been shown to improve performance when fine-tuning
(Pittaras, Markatopoulou, Mezaris, & Patras, [2017). Finally, the experimental datasets were extended,
which allowed for more extensive training and evaluation experiments. For training and evaluation, we
used three datasets. Two were provided by the NIST 2018 Media Forensics Challenge, called Dev1
and Dev2, consisting of 60 and 192 videos respectively, each equally split between tampered videos
and their untampered sources. Correspondingly, the two datasets consist approximately of of 44,000
and 134,000 respectively, again equally split between tampered and untampered frames. The third
experimental dataset was sourced from the Fake Video Corpus. The Corpus contains both videos that
convey real information (“real”), and videos that are associated with disinformation (“fake”). However,
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these categories do not strictly coincide with untampered and tampered videos. There are videos in
the FVC annotated as “real”, that contain watermarks or overlaid text, or have otherwise been edited,
and which would trigger a tampering detection algorithm. On the other hand, there are videos in the
FVC annotated as “fake” which, while contextually misleading, have not been tampered. Out of all
the videos contained in the FVC, we selected 35 “real”, unedited videos, and 33 “fake” videos that
were tampered with the aim of deceiving viewers, but with no obvious edits such as logos, watermarks,
or cuts/transitions. In total, the FVC-based dataset we created contains 163,000 frames, which are
approximately evenly distributed between tampered and untampered videos.

3.3 Progress and evaluations during Year 3
3.3.1 Tampering localization qualitative results

[Content removed as confidential.]

3.3.2 Quantitative results

For our evaluation experiments of the tampering detection method, we first applied the two chosen filters,
namely Q4 and Cobalt, on all videos, and extracted all frames of the resulting output sequences to use
as training and test items. Then, each of the two chosen networks, GoogLeNet and ResNet, was trained
on the task using these outputs. For comparison, we also applied the three features from the state of
the art that we implemented, to be used for classification in a similar manner.

As explained, during training each frame is treated as an individual image. In order to test the
classifier, however, we require a per-video result. To achieve this, we extract the classification scores
for all frames, and calculate the average score separately for each class (tampered, untampered). If the
average score for the “tampered” class is higher than the average score for the “untampered” class, then
the video is classified as tampered.

We ran two types of experiments. In one case, we trained and evaluated the algorithm on the same
dataset, using 5-fold cross validation, and ensuring that all frames from a video are placed either in
the training or in the evaluation set to avoid information leak. In the other case, we used one of the
datasets for training, and the other two for testing. These cross-dataset evaluations are important in
order to evaluate an algorithm’s ability to generalize, and to assess whether any encouraging results we
observe during within-dataset evaluations are actually the result of overfitting on the particular dataset’s
characteristics, rather than a true solution to the task. In all cases, we used three performance measures:
Accuracy, Mean Average Precision (MAP), and Mean Precision for the top-20 retrieved items (MP@20).

For the within-dataset evaluations, we used the two NIST datasets (Dev1, Dev2) and their union.
This resulted in three separate runs, the results of which are presented in Table [4]

Table 4: Within-dataset evaluations

Dataset | Filter-DCNN | Accuracy MAP MP@20
cobalt-gnet 0.6833 0.7614 -
Devi cobalt-resnet 0.5833 0.6073 -
g4-gnet 0.6500 0.7856 -
g4-resnet 0.6333 0.7335 -
cobalt-gnet 0.8791 0.9568 0.8200
Dev2 cobalt-resnet 0.7972 0.8633 0.7600
g4-gnet 0.8843 0.9472  0.7900
q4-resnet 0.8382 0.9433 0.7600
cobalt-gnet 0.8509 0.9257 0.9100
Devi | cobalt-resnet | 0.8217  0.9069  0.8700
Dev?2 g4-gnet 0.8408 0.9369 0.9200
g4-resnet 0.8021 0.9155 0.8700

As shown on the Table [4] Dev1 consistently leads to poorer performance in all cases, for all filters
and both models. Accuracy is between 0.58 and 0.68 in all cases in Dev1, while it is significantly higher
in Dev2, ranging from 0.79 to 0.88. MAP is similarly significantly higher in Dev2. The reason we did not
apply the MP@20 measure on Dev1 is that the dataset is so small that the test set in all cases contains
less than 20 items, and thus is inappropriate for the specific measure.
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We also built an additional dataset by merging Dev1 and Dev2. The increased size of the Devi+Dev2
dataset suggests that cross-validation results will be more reliable than for the individual sets. As shown
on Table [4 Mean Average Precision for Dev1-+Dev2 falls between that for Dev1 and Dev2, but is much
closer to Dev2. On the other hand, MP@20 is higher than for Dev2, although that could possible be
the result of Dev2 being relatively small. The cross-validation Mean Average Precision for Devi+Dev2
reaches 0.937 which is a very high value and can be considered promising with respect to the task. It
is important to note that, for this set of evaluations, the two filters yielded comparable results, with Q4
being superior in some cases and Cobalt in others. On the other hand, with respect to the two CNN
models there seems to be a significant difference between GooglLeNet and ResNet, with the former
yielding much better results.

Within-dataset evaluations using cross-validation is the typical way to evaluate automatic tampering
detection algorithms. However, as we are dealing with machine learning, it does not account for the
possibility of the algorithm actually learning specific features of a particular dataset, and thus remaining
useless for general application. The most important set of algorithm evaluations for InVID automatic
tampering detection concerned cross-dataset evaluation, with the models being trained on one dataset
and tested on another.

The training-testing sets we ran were based on the three datasets we described above, namely Dev1,
Dev2, and FVC. We combine Dev1 and Dev2 to creat an additional dataset, named Dev1+Dev2. Given
that Dev1 and Dev2 are both taken from the NIST challenge, although different, we would expect that
they would exhibit similar properties and thus should give relatively better results than when testing on
FVC. In contrast, evaluations on the FVC correspond to the most realistic and challenging scenario,
that is training on benchmark, lab-generated content, and testing on real-world content encountered on
social media. All cross-dataset evaluations were ran five times, with the model retrained from scratch
each time from a different initialization. The results presented below are the mean results from the five
runs, to ensure that they are not derived by chance.

Table 5: Cross-dataset evaluations (Training set: Dev1)

Training | Testing | Filter-DCNN Accuracy MAP MP@20
cobalt-gnet 0.5818 0.7793 0.8200
cobalt-resnet 0.6512 0.8380 0.9000
g4-gnet 0.5232 0.8282  0.9000
g4-resnet 0.5240 0.8266  0.9300

Dev2 rawKeyframes-gnet (Rdssler et al., 2018) 0.5868 0.8450 0.8500
rawKeyframes-resnet (Rossler et al., 2018) 0.4512 0.7864 0.7500
highPass-gnet (Fridrich & Kodovsky, [2012) 0.5636 0.8103 0.8800
highPass-resnet (Fridrich & Kodovsky, 2012) 0.5901 0.8026  0.8400
frameDifference-gnet (Yao et al.,[2017) 0.7074 0.8585 0.8700

Dev1 frameDifference-resnet (Yao et al., 2017) 0.6777 0.8240 0.8100
cobalt-gnet 0.5147 0.5143  0.4800
cobalt-resnet 0.4824 0.5220 0.5000
g4-gnet 0.5824 0.6650 0.6400
g4-resnet 0.6441 0.6790 0.6900

FVC rawKeyframes-gnet (Rdssler et al., 2018) 0.5265 0.5261 0.4900
rawKeyframes-resnet (Rossler et al., 2018) 0.4882 0.4873 0.4400
highPass-gnet (Fridrich & Kodovsky, [2012) 0.5441 0.5359 0.5100
highPass-resnet (Fridrich & Kodovsky, 2012) 0.4882 0.5092 0.4900
frameDifference-gnet (Yao et al.,2017) 0.5559 0.5276  0.4600
frameDifference-resnet (Yao et al., [2017) 0.5382 0.4949 0.5100

The cross-dataset evaluation results can be seen in Tables 5} [6| and [7}

The results are shown in Tables 5] [} and[7] Using Dev1 to train and Dev2 to test, and vice versa,
yields comparable results to the within-dataset evaluations for the same dataset, confirming our expec-
tation that, due to the common source of the two datasets, cross-dataset evaluation for these datasets
would not be particularly challenging. Compared to other state-of-the-art approaches, it seems that our
proposed approaches do not yield superior results in those cases. Actually, the frameDifference feature
seems to outperform the others in those cases.

The situation changes in the realistic case where we are evaluating on the Fake Video Corpus. In
that case, the performance drops significantly. In fact, most algorithms drop to an Accuracy of almost
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Table 6: Cross-dataset evaluations (Training set: Dev2)

Training | Testing | Filter-DCNN Accuracy MAP MP@20
cobalt-gnet 0.5433 0.5504 0.5500
cobalt-resnet 0.5633 0.6563 0.6300
g4-gnet 0.6267 0.6972 0.7100
g4-resnet 0.5933 0.6383 0.6300

Dev1 rawKeyframes-gnet 0.6467 0.6853 0.6500
rawKeyframes-resnet 0.6200 0.6870 0.6200
highPass-gnet (Fridrich & Kodovsky, [2012) 0.5633 0.6479 0.6600
highPass-resnet (Fridrich & Kodovsky, 2012) 0.6433 0.6665 0.6500
frameDifference-gnet (Yao et al., 2017) 0.6133 0.7346 0.7000

Dev2 frameDifference-resnet (Yao et al., 2017) 0.6133 0.7115 0.6700
cobalt-gnet 0.5676 0.5351  0.5800
cobalt-resnet 0.5059 0.4880 0.4900
g4-gnet 0.6118 0.6645 0.7000
g4-resnet 0.5000 0.4405 0.3900

FVC rawKeyframes-gnet (Rdssler et al.,2018) 0.5206 0.6170 0.6600
rawKeyframes-resnet (Rossler et al., 2018) 0.5971 0.6559 0.6900
highPass-gnet (Fridrich & Kodovsky, [2012) 0.4794 0.5223 0.4700
highPass-resnet (Fridrich & Kodovsky, 2012) 0.5235 0.5541  0.5800
frameDifference-gnet (Yao et al., 2017) 0.4882 0.5830 0.6400
frameDifference-resnet (Yao et al., [2017) 0.5029 0.5653 0.5900

Table 7: Cross-dataset evaluations (Training set: Dev1+Dev2)

Training | Testing | Filter-DCNN Accuracy MAP MP@20
cobalt-gnet 0.5235 0.5178 0.5400
cobalt-resnet 0.5029 0.4807 0.4700
g4-gnet 0.6294 0.7017 0.7200
g4-resnet 0.6000 0.6129 0.6400
Dﬁ‘” FVC rawKeyframes-gnet 0.6029  0.5694 0.5300
Dev?2 rawKeyframes-resnet 0.5441 0.5115 0.5200
highPass-gnet 0.5147 0.5194  0.5300
highPass-resnet 0.5294 0.6064 0.7000
frameDifference-gnet 0.5176 0.5330 0.5500
frameDifference-resnet 0.4824 0.5558 0.5400

0.5. One major exception, and the most notable finding in our investigation, is the performance of the Q4
filter when used to train a GoogLeNet model. In this case, the performance is significantly higher than
in any other case, and remains promising with respect to the potential of real-world application. Being
able to generalize into new data with unknown feature distributions is the most important feature in this
respect, since it is very unlikely at this stage that we will be able to create a large-scale training dataset
to model any real world case.

Trained on Dev1+-Dev2, the Q4 filter combined with GooglLeNet yields a MAP of 0.702. This is a
promising result and significantly higher than all competing alternatives. Still, however, it is not sufficient
for direct real-world application, and further refinement would be required to improve this.

The aim of these experiments was to evaluate the extent in which we could automatize the process
of analyzing the filter outputs using state-of-the-art algorithms. By observing the results, the conclusion
was that, while alternative features performed better in within-dataset evaluations, the InVID filters were
more successful in realistic cross-dataset evaluations, which are the most relevant in assessing the
potential for real-world application.

Still, the performance is not yet sufficiently high for market application, and more effort is required
to reach the desired accuracy. One major issue is the lack of accurate temporal annotations for the
datasets. By assigning the “tampered” label on all frames of tampered videos, we are ignoring the
fact that tampered videos may also contain frames without tampering, and as a result the labelling is
inaccurate. This may be resulting in noisy training, which may be a cause of reduced performance.
Furthermore, given the per-frame classification outputs, currently we calculate the per-video score by
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comparing the average “tampered” score with the average “untampered” score. This approach may not
be optimal, and different ways of transitioning from per-frame to per-video scores.

Currently, given the evaluation results, we cannot claim that we are ready for real-world application,
nor that we have exhaustively evaluated the proposed automatic detection algorithm. In order to improve
the performance of the algorithm and run more extensive evaluations, we intend to improve the temporal
annotations of the provided datasets and continue collecting real-world cases to create a larger-scale
evaluation benchmark. Finally, given that the current voting scheme may not be optimal, we will explore
more alternatives in the hope of improving the algorithm performance. Furthermore, we should extend
our investigations into more filters and CNN models, in order to improve performance, including the
possibility of using feature fusion by combining the outputs of multiple filters in order to assess each
video.

3.4 API layer and integration with InVID

[Content removed as confidential.]
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4 Near-duplicate Detection

During the third year of the project, we dedicated effort on the composition of an evaluation dataset that
provides a realistic representation of the Near-Duplicate Video Retrieval (NDVR) problem and extends
it to the more general problem of Fine-grained Video Retrieval (FIVR). Additionally, we focused on the
improvement of the retrieval performance of the developed approach, further surpassing the current
state of the art in accuracy. We achieved this by casting the proposed Deep Metric Learning approach to
a frame-level method by employing Chamfer Distance to exploit distances between video frames during
video similarity calculation. Additionally, we also improved the NDD component through integration of
all contributions into the InVID platform, providing new functionalities, and fixing problems or bugs that
were identified during the project test cycles.

4.1 State of the art

Since D3.2, several works related to NDD have been proposed in the relevant literature. Wu et al.
(Y. Xu, Monrose, Frahm, et al., 2017) developed a copy detection method based on derivative feature
extraction computed as the temporal gradient of the video frames average intensity signal. For efficient
indexing and retrieval, they employed a K-d tree structure (Bentley, [1975), and trained a SVM (Cortes
& Vapnikl [1995) to recognize near-duplicate video sequence pair. Wang et al. (L. Wang, Bao, Li,
Fan, & Luo, |2017) proposed a compact video representation based on CNN features combined with
Sparse Coding (SC) (Coates & Ng| 2011) for video copy detection. They first extract CNN features
from the video frames, encode them into a fixed length vector via the SC method, and generate video
representations by applying max-pooling on each component of the frame vectors. In (Liu et al., 2018),
the authors proposed a fast video searching strategy based on inverted file indexing. They extracted
frame fingerprints from a hashing process which are stored in an inverted file structure, and devised a
video retrieval process which involves table look-up and word counting operations for efficient fingerprint
matching. The authors in (Guzman-Zavaleta & Feregrino-Uribel 2018) proposed an adaptive decision
strategy based on reinforcement learning. They first extracted two low-cost global descriptors based on
the spatial information and the temporal variances of video sequences and then employed the Q-learning
(Watkins & Dayan, |1992) algorithm to learn the optimal policy for the decision of the near-duplicate video
segments. Finally, Baraldi et al. (Baraldi, Douze, Cucchiara, & Jégou, |2018) proposed a temporal layer
in a deep network that calculates the temporal alignment between videos by maximizing a time-sensitive
similarity metric in the Fourier domain. They trained the network minimizing a triplet loss that takes into
account both the localization accuracy and the recognition rate.

The method developed in InVID and described in this deliverable was designed with different goals
compared to the above methods, most of which focus on the problem of partial duplicate video detection
and localization (i.e. identify a particular video segment that matches a segment of the query video).
Although solving this problem could be valuable in the context of InVID, we found that such approaches
suffer from two weaknesses: a) the definition of near-duplicity (either at the level of a video or at the
level of a video segment) is very rigid, which typically results in only a small subset of almost identical
videos being retrieved; b) methods for partial duplicate video retrieval typically suffer from high response
times and big computational requirements. Of the above approaches, the one by Baraldi et al. bears
considerable similarities with the one developed in InVID, i.e. video similarity calculation is based on
a trained neural network model, which allows for a flexible definition of near-duplicity. This provides
support for the validity of the InVID approach, which was also designed to overcome the computational
challenges of the problem at hand, i.e. combine the speed of video-level matching methods with the
accuracy of frame-level matching methodsﬂ

Additionally, we reviewed several relevant video datasets from the literature, since considerable effort
during the final project year has been expended towards the construction of a video dataset that covers
the needs of the FIVR problem setting. The most popular and publicly available dataset related to the
NDVR problem is the CC_WEB_VIDEO (X. Wu, Hauptmann, & Ngo, [2007). It has been published by the
research groups of City University of Hong Kong and Carnegie Mellon University. The dataset consists
of 13,129 generated videos collected from the Internet. For the dataset collection, a total number of 24
popular text queries were submitted to popular video platforms, such as YouTube, Google Video, and
Yahoo! Video. A set of videos were collected for each query and the video with the most views was

“Note that it was not possible to perform a systematic experimental comparison of the InVID approach with the methods
discussed above, given that they were only recently published.
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selected as the query video. Then, videos in the collected sets were manually annotated based on their
relation to the query video.

Several variations of the CC_WEB_VIDEOQ dataset have been developed by researchers in the NDVR
fields (Song, Yang, Huang, Shen, & Hong, 2011} |Cai et al., 2011} |Chou, Chen, & Leel [2015). In or-
der to make the NDVR problem more challenging and benchmark the scalability of their approaches,
researchers usually extend the core CC_WEB_VIDEO dataset with many thousands of distractor videos.
The most well-known public dataset that was created through this process is UQ_VIDEO (Song et al.,
2011). The combined dataset contains 169,952 videos (including those of the CC_WEB_VIDEO) in total
with 3,305,525 keyframes and the same 24 query videos as the ones accompanying the CC_WEB_VIDEO
dataset.

Other popular public benchmark datasets are the Muscle-VCD dataset (Law-To, Joly, & Boujemaa,
2007), and the TRECVID dataset (Kraaij & Awad, [2011) developed for the video copy detection problem.
The first one consists of 18 videos of 100 hours and the second one includes 11,503 reference videos
of over 420 hours, respectively. For both datasets, a number of transformations were simulated by using
video-editing software in order to generate synthetic video queries. The generated queries are used in
order to detect the the original versions of the video in the dataset and determine the copied segment.

A more recent dataset that is relevant to our problem is the VCDB (Jia et al., 2014). This dataset is
composed of videos derived from popular video platforms (i.e. YouTube and Metacafe) and has been
compiled and annotated as a benchmark for the partial copy detection problem, which is highly related
to the NDVR problem. VCDB contains two subsets, the core and the distractor subset. The core subset
contains 28 discrete sets of videos composed of 528 query videos and over 9,000 pairs of partial copies.
Each video set was manually annotated by seven annotators and the video chunks of the video copies
were extracted. The distractor subset is a corpus of approximately 100,000 distractor videos that is used
to make the video copy detection problem more challenging.

Although all the aforementioned video collections capture different aspects of the NDVR problem,
all of them are limited in different ways, e.g. small size, no user-generated videos, high dissimilarity
between distractor videos and queries, etc. To this end, we composed a large video dataset, namely
FIVR-200K, that covers the evaluation needs of NDVR and extends its scope to the challenge of fine-
grained video retrieval (such as detecting videos from the same event but from different viewpoints).
The dataset consists of 225,960 videos derived from numerous real-world events, hence including a
wide variety of videos and many distractor videos that render the near-duplicate video retrieval task very
challenging.

4.2 Method description

In D3.2, we presented a video-level NDVR scheme based on Deep Metric Learning (DML) (Kordopatis-
Zilos, Papadopoulos, Patras, & Kompatsiaris, 2017b). lts major drawback was that all frame features
are combined into a single video descriptor by averaging all frame feature vectors to a single video-
level vector. Consequently, the generated video representation lacked fine-grained video information
coming from individual frames. To overcome this issue and improve performance, we extended the DML
approach by incorporating frame-level matching between two compared videos. To this end, the video
representation is now composed of all frame descriptors instead of their average. More specifically, the
distance between two compared videos derives from the calculation of the distance between all frames
of the two compared videos. This video representation helps to preserve the local information of the
video content which leads to more accurate comparison between videos and facilitates the needs of
Partial-Duplicate Video Retrieval (PDVR).

We build upon the scheme described in D3.2 in order to train the proposed DML model. The network
architecture and the triplet generation method remain the same. We also use the feature extraction
process described in D3.1. Since our goal is to incorporate frame-level matching in our approach, the
similarity (or equivalently distance) between all pairs of frames of the two compared videos need to be
calculated. To do so, we employ the Euclidean Distance Matrix (EDM), a table of all pairwise square-
distances between the two sets of frames.

In particular, we consider two arbitrary videos g and p with sets of frame descriptors q =[q,...,qy] €
RN and p = [py,...,Py] € RM, where N, M are the total number of keyframes for video ¢, p re-
spectively, and k the dimensionality of the feature vectors. All frame descriptors are provided to the
DNN network to compute their feature embeddings; thus, the video representations are transformed to

fo(@) = [fo(q1); -, fo(Ay)] € RN and fo(P) = [fo(P1); -, fo (Py)] € R“M, where d is the dimensionality
of the feature embedding. For convenience the transformed vectors are going to be indicated with the
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Pwm

Figure 3: lllustration of the proposed process for the the calculation of the Chamfer Distance between
two arbitrary videos.

subscript letter 6 instead of the function fy(-), for example q4. To construct the EDM, we have to cal-
culate all possible pairwise distances between the feature embeddings qq; and py ;, i € [1,N], j € [1,M].
Equation[1]illustrates the composition of the EDM.

din din diz ... diu
dyy dy dy3 ... doy

D(qq.py) = |B1 d2 di ... dm )
dyi dya dys ... dym

where, D(x,y) € RV is the EDM between two sets x, y, and d;; is the distance between the embeddings
dy; and py ;. The pairwise distances are calculated based on the Equation

dij = qu,i—Pe,sz 2)

Expanding the norm yields

dij = H%,i - Pe.;”z = (dg,;— Pe,j)T(Qe,i —Po ) = qg,i‘le,i - zqg,ipe,j + Pg,jpe,j 3)

Similarly, the EDM can be calculated using linear algebra instead of calculating the distance between all
frame embeddings exhaustively. The computation of EDM is provided in Equation

D(dg,Pe) = diag(dgde) 1y — 204 Pe + 1y diag(Pg Pe) (4)

where, 1x denotes a column vector of all ones with size K and diag(A) is a column vector of the diagonal
entries of matrix A. To compute a single value as the distance between two videos, we employ Chamfer
Distance (CD) (Barrow, Tenenbaum, Bolles, & Wolf, [1977). To this end, considering that q is the query
and p is a candidate video set, we get the distance of the closest candidate frame in the embedding
feature space for each one of the query frames. Finally, the average of the selected distances is the final
video distance. The CD is formulated in Equation

N

GD(g.po) = - ¥ min D(dg.Ps,) (5)

N i=1 Jel,M]

Figure [3| summarizes the entire process for the CD calculation between two videos. The function
applied on the EDM is depicted inside green circles and along the corresponding axis. The yellow
circles represent the concatenation of all frame embedding into one video set. The triplet loss function
can be rewritten as in Equation 6]

Z(v,v",v") =max{0,CD(Ve,Vy ) — CD(Ve,Vq) + 7} (6)

where, v,v",v~ are the query, positive (NDV), and negative (dissimilar) videos of an arbitrary triplet,
accordingly. To calculate the final video similarities, we employ the same scheme described in D3.2 for
the conversion of video distance to video similarity.
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Figure 4: Overview of the video collection process.

During Year 3, we also made publicly available the code for the feature extraction sterﬂ and the Deep
Metric Learning Near-Duplicate Video Retrieval algorithmsﬂ

4.3 FIVR-200K dataset

The FIVR-200K dataset (Kordopatis-Zilos, Papadopoulos, Patras, & Kompatsiaris, [2018) was designed
with the following goals in mind: a) the videos should be associated with a large number of events, b)
the categories of these events should be the same, and c) the dataset size needs to be sufficiently large
to make retrieval of relevant results challenging.

To begin with, we define the following categories of related videos: a) Duplicate Scene Videos (DSV):
these are videos that share at least one scene (captured by the same camera) regardless of any applied
transformation. A special case of this category is Near-Duplicate Videos (NDVs), i.e. videos that have
all scenes in common. b) Complementary Scene Videos (CSV): these are videos that contain part of
the same spatio-temporal segment, but are captured from different viewpoints. c) Incident Scene Videos
(ISV): these are videos that capture the same incident, i.e. they are spatially and temporally close, but
have no temporal overlap.

For the dataset collection, we set up the process depicted in Figure [4]to retrieve videos about major
events that took place during the recent years. First, we crawled Wikipedia’s ‘Current Event’ page[Z]
to build a collection of the major events since the beginning of 2013. Each event is associated with
a topic, headline, text, date, and hyperlinks. For the remaining steps of the process, we retain only
events categorised as ‘Armed conflicts and attacks’ or ‘Disasters and accidents’. We selected these two
categories in order to find multiple videos on YouTube that report on similar events, so that they would
bear relatively high visual similarity with each other (due to common depicted themes), with the ultimate
goal of creating a challenging retrieval task. The time interval used for the crawling of the events was
January 151 2013 to December 3151 2017. A total of 9,431 events were collected, and 4,687 events were
retained after filtering. In the next step, the public YouTube APE] was used to collect videos by providing
event headlines as queries. The results are filtered to contain only videos published at the corresponding
event start date and up to one week after it. Furthermore, they are filtered to contain only videos with
duration up to five minutes. This resulted in the collection of 225,960 videos (~48 videos/event).

Selecting “appropriate” queries is important for ensuring that the resulting annotations and evaluation
protocol that accompany the dataset will be representative of and commensurate to the challenges
arising in real-world problem settings. To this end, the query selection process was designed with two
goals in mind: a) to generate challenging queries, i.e. queries that will lead to several distractor videos
that will likely challenge content-based retrieval systems, and b) to find query videos that will lead to
the retrieval of videos with various modifications that will not only be trivial NDV cases, but also contain
interesting variations (e.g. different viewpoints of the same scene), i.e. CSV and ISV. To achieve those
two goals, we implemented a largely automatic process that combines visual and textual video similarity.

First, the visual similarity between videos was computed based on the developed NDVR method
described in D3.2. Second, the textual similarity between two videos was computed as the cosine simi-
larity between the tf-idf representations of the words in their titles. To perform the similarity calculation,
we first pre-processed video titles with the NLTK toolkit (Bird & Loper, 2004), applying part-of-speech
(PoS) tagging, removing all verbs (which we found to introduce unnecessary noise) and providing the
results to the NLTK WordNet-based lemmatizer to extract the lemmas, which constitute the word-based
representation of the titles. The overall video similarity derives from the average of the visual and textual

Shttps://github.com/MKLab-ITI/intermediate-cnn-features
Shttps://github.com/MKLab-ITI/ndvr-dml
"https://en.wikipedia.org/wiki/Portal:Current_events
8https://developers.google.com/youtube/
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Figure 5: Overview of the annotation process. Two groups of videos are involved, derived based on their
visual and textual similarity to the query. Three annotation phases take place and two filtering steps are
applied. av stands for the average of visual and textual similarity scores between the query and each
video in the visual or textual group.

similarity. Tf-idf was selected as a representation for both visual and text words because of its sparsity,
which was practical for fast similarity calculation and efficient dataset annotation.

In the next step, we computed non-zero similarities between video pairs. Only video pairs that share
at least one visual or text word were considered, which resulted in a complexity much lower than O(n?).
Afterwards, we created a video graph G by connecting with an edge video pairs with similarity greater
than a certain threshold ¢, (empirically set to 0.7). To identify meaningful video groups, we extracted
the connected components C of the video graph G with more than two videos. Then, we defined the
uploader ratio r. of each component ¢ € C using Equation

~ Huylv€c,u, €U}
- N

c (7)
where the numerator is the number of unique uploaders in the component, v is a video in the component,
u, is the uploader of video v, U is the set of uploaders in the dataset, and N, is the number of videos
in the component. We have empirically found that components with low uploader ratio usually contain
videos from a single specific channel (e.g. news channel) with titles that are very similar (e.g. exactly
the same title with different date) or with content that is visually highly similar (e.g. the same presenter
reporting news in the same background). However, based on our definition, such videos are neither
considered DSV nor CSV or ISV. For that reason, we discard components with uploader ratio less than
a threshold ¢ (empirically set to 0.75).

Since we need components consisting of videos that refer to the same incident, we applied another
criterion on the component set based on the publication date of their videos, and retained only compo-
nents consisting of videos that were published within a time window of two weeks. Our goal is to find
queries that will lead to result sets with many DSV, CSV and ISV. Intuitively, large components with many
(visually and textually) similar videos have better chance of containing such videos. For that reason, we
rank connected components based on their size and select one query video per component. We con-
sider that short videos with few shots to be the most suitable candidates for having been modified and
reposted several times (both as single videos or as part of mash-ups). Therefore, we select videos with
duration less than a threshold ¢; (empirically set to 90 seconds). Trying to find the original version of
videos in each cluster, we choose as query the video that was published earliest. The total number of
resulting queries using the above process was 635. Since it would be overly time consuming to annotate
all of them, we selected the top 100 as the final query set (ranked based on the size of the corresponding
graph component).

Figure 5] depicts the entire annotation process, which is carried out in three steps. Given a query,
two groups of videos are retrieved, one based on visual similarity and one based on textual similarity. In
the first step, we annotate the videos contained in the “visual” group. The end of the first step occurs
when a total number of 100 irrelevant videos have been annotated after the last relevant result (i.e.
annotated as NDV, DSV, CSV or ISV). In the second step, videos in the “textual” group that have been
already annotated as part of the visual group are removed. The annotation process continues with
the remaining videos in the textual group. Similarly, this step ends either when a total number of 100
irrelevant videos have been annotated after the last relevant one or after the first 1000 videos have
been annotated (whatever of the two criteria applies first). To minimize the possibility of having missed
relevant videos, in the third and final step, the remaining videos of the two groups are merged and filtered
based on their publication date. We retain only videos that have been published within a time window
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Figure 7: Distribution of annotation labels per query (best viewed in colour).

of a week before and after the publication date of the quer)ﬂ The remaining videos are ranked based
on the average visual-textual similarity and the annotation process proceeds until either 200 irrelevant
videos have been found after the last relevant video, or there are no videos left in the merged group.

The annotation labels and corresponding definitions, which were used by the annotators, are the
following: a) Near-Duplicate (ND): These are a special case of DSVs, b) Duplicate Scene (DS): DSVs
are annotated with this label. c) Complementary Scene (CS): CSVs are annotated with this label, d)
Incident Scene (IS): ISVs are annotated with this label, d) Distractors (DI): videos that do not fall in
any of the above cases are annotated as distractors. For the annotation of the dataset, the extracted
queries were split in two parts, each assigned to a different annotator. After the end of the annotation
process, all annotated videos (excluding the videos labeled with DI) were revisited and tested for their
consistency to the definitions.

In total, the dataset comprises 225,960 videos associated with 4,687 Wikipedia events. Figure [f]
illustrates the monthly distribution of the collected events, videos and queries. There is a noteworthy
peak of events during the last quarter of 2015. During that period, major wars (e.g. the Syrian civil
war, the war in Afghanistan, the Yemeni civil war) and a number of devastating natural disasters (e.g.
hurricane Joaquin, Hindu Kush earthquake and an intense Pacific typhoon season) took place leading
to daily newsworthy incidents. From the temporal video distribution, one may notice an increase in video
sharing in the last two years which does not correspond to the trend in the timeline of major events. A
possible explanation may be the increasing trend in video capturing and sharing on YouTube. Finally,
it is noteworthy that the temporal distribution of queries approximately follows the one of videos over
time with more query videos published during the last two years of the dataset. This confirms that the
employed query selection process does not introduce any temporal bias.

Regarding the annotation labels, we found that the selected queries have on average 13 NDV, 57
DSV, 18 CSV and 35 ISV. Figure [7]illustrates the distribution of annotation labels per query. The queries
are ranked based on the size of the cluster they are associated with. As expected, there is considerable
correlation (Pearson correlation=0.62) between the cluster size and number of videos that have been
annotated with one of the four relevant labels. For all 100 queries, the total number of unique videos
that were annotated (including Dls) is about 140 thousands. Some videos have been annotated multiple
times, because they have different labels for different queries.

9In this annotation step, we consider videos published up until one week before the query video, because of some rare cases
that one or more related videos were not included in the component of the query video.
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4.4 Progress and evaluations during Year 3

To evaluate the proposed approach we use the same experimental setup described in D3.2. The VCDB
dataset (Jiang, Jiang, & Wang, 2014) is employed as the development set exclusively, which is exploited
to generate video triplets and to train the network. The results of the proposed approach are obtained on
various setups of CC_WEB_VIDEO dataset (X. Wu et al., |2007) and compared with the previous meth-
ods as well as five approaches from the state-of-the-art. In addition, we use the FIVR-200K dataset
(Kordopatis-Zilos et al., [2018) for validating the results on a second independent dataset. We have de-
vised three different tasks on FIVR-200K: a) the Duplicate Scene Video Retrieval (DSVR) task where
only videos annotated with ND and DS are considered relevant, b) the Complementary Scene Video
Retrieval (CSVR) task which accepts only the videos annotated with ND, DS or CS as relevant, and c)
Incident Scene Video Retrieval (ISVR) task where all labels (with the exception of DI) are considered rel-
evant. The proposed approach is benchmarked against the developed methods and the five competing
approaches from state-of-the-art that were described in the past deliverables.

We study the performance of the proposed DML approach with frame-level matching in two variants
of CC_WEB_VIDEO dataset, and in relation to the underlying CNN architecture. We experiment with
AlexNet and GoogleNet. For each of them, four configurations are tested: i) CNN (baseline): average
all frame descriptors to a single vector and use it for retrieval without any transformation, ii) DML.: is the
vanilla DML approach with late fusion as presented in D3.2, iii) CNN-CD: combine the frame descriptors
without any transformation with the proposed CD scheme, iv) DML-CD: apply the learned embedding
function to every frame descriptor and then apply the proposed CD scheme.

CC_WEB_VIDEO CC_WEB_VIDEO*
Method | AlexNet GoogleNet | AlexNet GoogleNet
CNN 0.948 0.952 0.887 0.898
DML 0.964 0.969 0.922 0.934
CNN-CD | 0.976 0.977 0.957 0.962
DML-CD | 0.979 0.981 0.960 0.964

Table 8: mAP of every CNN architecture with the four system setups.

Table ] illustrates the mean Average Precision (mAP) of the two CNN architectures with the four
system setups. It is evident that the application of the proposed CD scheme has considerable impact
on the performance of the model. In both cases, DML and CNN, the improvement from the incorpora-
tion of the CD scheme ranges from 0.012 to 0.07 in terms of mMAP. GoogleNet achieves better results
for all four settings with considerable margin, with mAP scores of 0.981 and 964 on CC_WEB_VIDEO
and CC_WEB_VIDEO* respectively. Furthermore, the DML approach consistently outperforms the pre-
trained CNN features in every system setup, which indicates that the similarity learning process benefits
the overall component performance.

To test the full potential of the proposed approach, we trained both DML variants with end-to-end
training. Instead of keeping the CNN network fixed during training, we trained the CNN network as well
by backpropagating the DML error to the convolutional layers. However, due to memory insufficiency,
we have tested only the AlexNet architecture. For the utilization of bigger and more accurate networks
(e.g. ResNet, Inception, VGG), we have to redesigned the training process. Hence, for the sake of
comparison, four training configurations are benchmarked: i) DML: the vanilla DML approach with late
fusion and fixed network during training, ii) DML,,.: the end-to-end version of the vanilla DML, iii) DML-
CD: the DML approach with the proposed CD extension and fixed network during training, iv) DML-CD:
the end-to-end version of the DML approach with the proposed CD extension.

Run CC_WEB_VIDEO | CC_WEB_VIDEO*
DML 0.964 0.922
DML,,. 0.971 0.948
DML-CD 0.979 0.960
DML,,.-CD 0.980 0.965

Table 9: mAP comparison of four different training variants of the DML methods (with AlexNet).

Table [ presents the mAP of the four different training configurations of the DML method. Re-
garding the proposed CD scheme, the improvement from the end-to-end training is marginal. For
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Figure 8: Precision-Recall curve comparison of the proposed DML approach and existing approaches.

CC_WEB_VIDEOQO* the improvement is 0.005, whereas for CC_.WEB_VIDEO it is only 0.001. The only
case where end-to-end training has a clear impact is for the vanilla DML on CC_WEB_VIDEO*, where
the mAP increased from 0.922 to 0.948.

Furthermore, for comparing the performance of our approach with the developed NDVR approaches
and five from the literature, we select the setup using GoogleNet pre-trained features denoted as DML-
CD, since it achieved the best results. The compared methods are: CNN-L (Kordopatis-Zilos, Pa-
padopoulos, Patras, & Kompatsiaris| |2017a)), DML (Kordopatis-Zilos et al.l 2017b), CH & LS (X. Wu
et al. [2007), ACC (Cai et al [2011), SMVH (Hao et al, [2017) and PPT (Chou et al., [2015) .Table [10]
presents the mAP scores of the competing methods. Our approach outperforms all methods with a clear
margin. The same result derived from the comparison of the PR curves illustrated in Figure [8 with the
cyan line (proposed approach) clearly lying upon all others up to 95% recall. It is noteworthy that our
approach is trained on the VCDB dataset and does not have any knowledge from the evaluation dataset,
yet it achieves the best results among all other state-of-the-art approaches with a significant margin.

Method | CH ACC LS SMVH PPT CNN-L DML DML-CD
mAP | 0.892 0.944 0.952 0.971 0.958 0.974 0.969 0.981

Table 10: mAP comparison between the proposed DML-CD approach and existing approaches.

In addition, the developed approaches are also benchmarked on the FIVR-200K dataset. As it has
already been described, it includes three tasks that accept different type of video results as relevant.
The performance of the compared approaches is quantified based on the mean Average Precision,
and their scalability based on the execution time per query. We compare the previously deployed in
the NDD service approaches. In particularly, we compiled the following runs: BoW-L (Kordopatis-Zilos
et al., 2017a) that is a layer-based Bag-of-Word (BoW) scheme (D3.1), DML+BoW that uses DML
(Kordopatis-Zilos et al., 2017b) for feature extraction and BoW for aggregation (D3.2), and DML-CD
which is the currently proposed approach. Due to the high execution time of the DML-CD method, we
implemented a combination of DML+BoW and DML-CD, since both of them incorporate DML features.
The former method is used in order to initially calculate video similarity, and then rerank the videos that
surpass a given threshold based on the latter method. This hybrid method is denoted as H-DML and two
similarity thresholds are tested, i.e. 0.4 and 0.1. All runs were implemented with frame features derived
from the VGGNet a