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Abstract

This deliverable provides a final summary of Social Media Filtering and Extraction in the InVID project.
The update reflects on the progress made in the InVID project, references all methods and components
that have been implemented and integrated into the InVID platform workflow, and provides a final evalu-
ation of those methods and components both against their prior versions and against current third party
competitors. The methods and components cover:

– Story Detection - an algorithm to extract distinct newsworthy stories out of a Twitter stream, label
those stories in terms of the most significant keywords that define that story, and rank those stories
by volume of social media content being generated that refers to that story.

– Social Media Extraction - a set of components to generate story-based queries at regular intervals
on social platform APIs in order to retrieve timely and relevant video content for those stories.

– Social Media Annotation - a set of components for the fragmentation of user-generated video
content, the extraction of thumbnails for videos and their fragments, and the labeling of each video
fragment with a set of most representative visual concepts in that fragment.
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1 Introduction

The topic of this deliverable is to outline the successful completion of the social media filtering and
extraction pipeline in the InVID project according to internal benchmarking of the implemented InVID
components as well as external comparison of the provided functionalities with similar, competing soft-
ware or services. We update on the implementation of each component since the last report was made
one year earlier in deliverable D2.2; additionally we provide a section comparing our work to the state of
the art in the area including other tools which provide similar functionality, and we conclude each section
with a final evaluation of the components, both by comparing their performance to the evaluations con-
ducted one year ago (see deliverable D2.2) and by comparing the provided functionality with the other
state of the art tools.

The structure of the deliverable is as follows:

– Story Detection - the first section will describe our chosen technological method for extracting
stories from the social media stream, their disambiguation and relevance.

– Social Media Extraction - the following section will describe our applied approach to information re-
trieval from large scale social media sources in order to acquire references to media items relevant
to the current stories.

– Social Media Annotation - the next section will present the final extensions to the metadata model
used to describe extracted social media and the development and evaluation of a service for tem-
poral fragmentation of user-generated videos and the conceptual annotation of those fragments.

– Future Outlook - based on the results reported in this document, we conclude with a look into
the future and the role we foresee for these technologies in both supporting InVID as a video
verification solution for journalists as well as other potential uptake opportunities.

1.1 History of the document

Table 1: History of the document.
Date Version Name Comment

2018/04/19 V0.1 L. Nixon first structure created after agreement with partners

2018/05/03 V0.2 L. Nixon first content creation and updates, incl. state of the
art and evaluation notes

2018/05/18 V0.4 L. Nixon, D. Fischl,
F. Fischer

updates on planned evaluations and completed im-
plementation work

2018/05/18 V0.5
E. Apostolidis, F.
Markatopoulou, V.
Mezaris

updates on API of video analysis service, and
concept-based video labeling

2018/06/08 V0.6 L. Nixon, D. Teyssou updates on the evaluations of story detection and
social media retrieval

2018/06/08 V0.7 E. Apostolidis updates on web app for reverse keyframe search
2018/06/11 V0.8 L. Nixon, E. Apostolidis completing deliverable and finalisation for the QA
2018/06/22 V0.9 L. Nixon, E. Apostolidis after-QA version, ready for final check
2018/06/25 V1.0 L. Nixon, E. Apostolidis final version, ready for submission to EC

c© InVID Consortium, 2018 6/44



Social media filtering and extraction, pre-processing and annotation, final version D2.3

1.2 List of abbreviations

Table 2: Acronyms used.
Acronym Explanation

API Application Programming Interface
CCTV Closed-Circuit TeleVision
DCNN Deep Convolutional Neural Networks
FTP File Transfer Protocol

HTTP HyperText Transfer Protocol
IPTC International Press Telecommunications Council
JSON JavaScript Object Notation

KB Knowledge Base
LMGE (algorithm) Label correlation Mining with relaxed Graph Embedding

MAP Mean Average Precision
MDL Multi-Domain Learning
MTL Multi-Task Learning

MXinfAP Mean eXtended inferred Average Precision
NEK Named Entity keywords
NEL Named Entity Linking
NER Named Entity Recognition
NLP Natural Language Processing

REST Representational State Transfer
RGB (color model) Red, Green, Blue

RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
SKB Semantic Knowledge Base

SURF Speeded Up Robust Features
SVM Support Vector Machine
UGC User Generated Content
UGV User Generated Video

UI User Interface
URL Uniform Resource Locator
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2 Story Detection

In our initial proposal we presented a conceptual workflow for ”Topic Detection”. Our goal was to au-
tomatically identify newsworthy events which could guide journalists to online media being posted in
association with that event (and which may require verification before it can be used in the professional
news cycle). We had three primary requirements to address in the InVID context, which took our work
away from the classical research activities in topic detection:

– Timeliness of detection of a new newsworthy event;

– Addressing multilinguality and alternative names in the detection approach;

– Quantifying the newsworthiness of the event as suitable for extracting eyewitness media.

Given that the results of our approach are referenced as Stories and that the InVID Dashboard already
has a model for classification of content called Topics, we have chosen to use the terminology ”Story
Detection” to refer to the InVID activity of news event extraction from social media, with Topics being
used in the dashboard as an additional tool to classify those extracted news events.

Tweets

Content
modeling

Burst 
detection

Clustering Ranking

KB

GUI/API

Content

Relevance

Content

Popularity

Figure 1: InVID workflow for story detection.

We have previously presented a workflow model for story detection (Fig. 1). In this section, we will
focus on the optimisations made to our story detection algorithm since the last reporting of the work
(deliverable D2.2):

– Content modeling - since modeling is based on a bag of keywords we have sought to improve the
keyword detection and disambiguation;

– Clustering - having chosen a community detection algorithm as a means to cluster documents as
bags of keywords, we have since focused on optimising the detection of the correct boundaries
between clusters to uniquely identify individual news stories;

– Labeling - we seek to identify each news story to the human user by automatically generating a
label for each cluster which can unambiguously provide a meaningful summary of the main items
that play the significant role in that story.

Thus we complete this section by presenting a final evaluation of the story detection work based first on a
comparison to the state of the art (which is presented in the next subsection) and then a benchmarking
against the presented algorithm from one year ago (see deliverable D2.2). Hence we will show how
the InVID work on story detection differs from other tools available to journalists as well as how it has
improved against its own baseline through the various optimisations described in this section.

c© InVID Consortium, 2018 8/44
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2.1 Relation to State of the Art
The previous deliverable (D2.2) reported on the state of the art in scientific research on the subject of
“topic detection”. Some work applies the task of topic detection to datasets about news, thus being a
similar form of news story detection as pursued by InVID. The final subcategory of work in this area is
where the identification of a news story should be achieved as quickly as possible following the actual
event which causes the news story, thus referred to as breaking news story detection. Besides our own
publications on tweet clustering for breaking news detection which help establish the work as part of
the state of the art (Vakulenko, Nixon, & Lupu, 2017) (Nixon et al., 2017) other recent publications have
shown that the topic of event detection (particularly from Twitter) remains very relevant and a subject of
ongoing research. A problem with this research area is the lack of consistency in how work is evaluated,
with different datasets being used in publications for evaluation (or often created in an ad hoc manner
for each publication). This makes it very difficult to draw direct comparisons, especially as the purpose
of event detection may differ (e.g. in InVID we consider also how the detected stories may be used to
also precisely collect related media content from social networks. Information retrieval is usually not a
considered purpose of other event detection publications.)

(Yılmaz & Hero, 2018) used Twitter hashtags with text and geolocation features, and thus needed to
both determine if a hashtag was associated with an event and which group of hashtags were associated
with the same event. They demonstrate computational efficiency in the event detection and tweet clus-
tering but do not address the newsworthiness of the events they detect nor evaluate the accuracy of the
identification of (news) events.

(Hammad & El-Beltagy, 2017) focused on burst detection (which we have already addressed in
D2.2) for Arabic language Twitter. They used tf/idf and entropy measures over sequential time frames.
Evaluation was restricted by the lack of gold standards for the Arabic language. However they looked
only for detection of up to three significant events in 12-23 hour periods, which is much less detailed
than InVID (with topics, up to 100 distinct stories in a 24 hour period).

(Srijith, Hepple, Bontcheva, & Preotiuc-Pietro, 2017) extends previous work of the PHEME project on
story detection from Twitter to now ’sub-story’ detection. For this, they make use of annotated datasets
restricted in each case to one ’main’ story e.g. Ferguson riots. Sub-stories are definitely an area of
future interest in story detection for InVID, however it can be noted that the Story Flow visualisation
already provides users with a means to identify and track larger stories over time (and while the story
is connected across time frames, one can still see changes in the associated keywords as the story
develops) whereas the reported ’automated’ results reflect the challenge of sub-story disambiguation
(highly variable evaluation scores from 0.11 to 0.7).

(Alsaedi, Burnap, & Rana, 2017) focus on ’disruptive event’ detection in Twitter through text-based
Naive Bayes classification and cosine similarity-based clustering. A temporal tf/idf approach determines
the top terms for each cluster. Precision@K results of event detection return values of 0.7 to 0.85. They
then restrict this further to the ’disruptive events’. There is no event labelling, particularly for information
retrieval, as in InVID - rather event summarization is done using centroid tweets in the clusters, closer
to our initial work in D2.1.

(Qin, Zhang, Zhang, & Zheng, 2018) present a frame based approach to event detection as opposed
to clusters. Frames can capture triples with relations between two arguments, thus modelling an event in
a more structured manner than a cluster of keywords or tweets. A more structured modelling of stories
is something we hope to add in InVID in the future, as the shift to the use of a Semantic Knowledge
Base for typing and disambiguating the keywords will allow such determination of agency and relations
between participants. Reported precision is 0.65 to 0.71; this is lower than what we found for InVID and
other state of the art systems but is attempting to detect events with a more structured representation of
those events which understandably adds new complexity to the task.

(Mele & Crestani, 2017) perform event detection by using topic mining, named entity recognition and
burst analysis. They evaluated this approach using news articles rather than tweets and reported an
average precision of the event clusters of 0.93. Interestingly they reported similar errors as we have
experienced in D2.2, e.g. cluster merges where there are shared keywords among two distinct stories.
We have been able to show significant removal of these false merges in our updated algorithm, as per
our ’distinctiveness’ measure.

(Tonon, Cudré-Mauroux, Blarer, Lenders, & Motik, 2017) propose ’semantic’ tweet analysis for event
detection. It models the tweet text in a structured manner using NLP then links to entities in Knowledge
Graphs such as DBPedia. As such, it improves keyword search for events in Twitter. The work is thus
distinct from ours as it is looking at improved ’pull’ of events (by search) whereas we seek to automatically
’push’ events (by detection). However the extension of event detection with additional semantics for the
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terms being discussed is also for us very relevant; the keywords update with the Semantic Knowledge
Base will provide us too with this additional semantic layer for event understanding.

(Katragadda, Benton, & Raghavan, 2017) may follow the most similar approach to ours for event
detection. Their paper focuses however on whether additional sources further improve results rather
than whether Twitter alone works well. Reported f-score for event detection with Twitter alone is 0.85,
and reaches 0.9 with the addition of one more source. As stated, this work entitled ’Event Detection
at Onset (EDO)’ appears closest to what has been done in InVID, where we are reporting evaluation
figures over 0.9 (see the Section 2.5) and providing shortened, accurate labels (EDO identifies events
by their full set of keywords) which also serve for precise information retrieval.

So we can consider our own implementation to represent the scientific state of the art in this area. To
compare, we will consider other tools or services that claim to offer the same functionality, i.e. automatic
detection of news stories in a timely manner from a given data set. Based on the services mentioned in
the previous deliverable and comparable tools (referred to as “Discovery Platforms”) identified as part of
the InVID exploitation and dissemination plan, we can refer to the following:

– Banjo - claims to offer near real time detection of news events based on big data analysis over
social network postings

– Dataminr for News - offers event detection by clustering tweets and geo-locating the story

– Echosec - does not automatically detect news events

– Event Registry - groups news articles into recent events

– Facebook Signal - uses Facebook data to highlight recently occurring events to journalists

– Nunki - have a beta platform Signal for news story detection from the Twitter stream

– Spike by Newswhip - does not automatically detect news events

– Truthnest - is focused on verification tools for tweets based on text and user analyses

While all of these platforms provide something similar to what we provide through InVID, it is already
clear not all have story detection capability. Some do allow searches for social media about a news story,
so some may be tested in the social media extraction chapter. We will note in the evaluation section
which tools we could compare directly with the InVID dashboard. The SNOW 2014 Data Challenge had
confirmed newsworthy topic detection to be still a challenging task: the top F-score of the competing
solutions had been only 0.4 (Precision: 0.56, Recall: 0.36). Unfortunately to date no comparable cross-
evaluation of news story detection tools has been performed and due to the particular idiosyncrasy of
the SNOW data set we can not directly compare our implementation to the SNOW 2014 participating
tools and their results. However, in last year’s evaluation we could report a correctness score of 0.895
and a distinctiveness score of 0.598. Besides comparing these past results to the results from our
implementation this year, we will also evaluate the implementation against the other story detection
tools introduced in this section as far as this is feasible.

2.2 Keywords (Semantic Knowledge Base)
One aspect of the story detection which was identified as critical to the accuracy of the results is the
quality of the keywords.

To form a basis for improved keyword disambiguation, we have set up a Semantic Knowledge Base
(SKB) which models distinct lexical senses as resources in a graph. This graph is extended by data for
machine translation of natural language and for supporting keyword annotation. These three parts are
connected in a Triple Store and then made available for distinct use cases to the InVID Platform through
a synchronization with its ElasticSearch indices and via a REST API. A Web-based user interface (SKB-
Viewer) will support eased means to explore the data in the Triple Store (see Fig. 3).

The central piece of the SKB is a lexical model based on the Lemon model (see Fig. 2). The Lemon
model has at its core these types:

– Lexical sense: A certain meaning

– Lexical entry: A word that evokes the lexical sense. A lexical entry usually has a part of speech (i.e.
one entry can be a verb evoking the meaning, another can be a noun evoking the same meaning)
and a language.

c© InVID Consortium, 2018 10/44
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Figure 2: The Lemon lexical model.

– Lexical form: An entry can have several forms. A distinction is made between canonical forms (the
lemma of a word) and other forms, e.g. tenses, plural, male/female forms, etc.

– Written representation: Each form has one or more written representations. This can e.g. account
for regional differences in spelling (UK/US) or maybe frequent misspellings.

An additional connection can be that a sense references e.g. a DBpedia resource. Eventually, we
hope to integrate the lexical senses in the SKB with the entities returned by the RECOGYNZE NER ser-
vice. To seed the initial SKB, we took a dump of the English language OmegaWiki from the lemonUby
project and translations into German, French, Spanish, Portuguese, Czech, Russian and Chinese were
included, where available. Since OmegaWiki only contains base forms, we collected (for English and
German) frequencies of terms and the part of speech tags they got assigned from documents ingested
into the webLyzard platform. Together with a lemmatizer we tried to attach non-lemmas to the correct
base form. Additionally we attached adverbs to the senses where the corresponding adjective got at-
tached and similarly adjectives to where the verb got attached (if the lemmatizer reduced them to an
adjective or verb, e.g. killed is the adjective to kill). This resulted in:

– 38758 distinct German terms

– 55058 distinct English terms

These are attached to:

– 66827 English forms

– 76998 German forms

Additionally for the other languages, each form has, by now, only one term written representa-
tion/term attached:

– 69929 Spanish forms

– 56605 French forms

– 28399 Portuguese forms

– 15119 Russian forms

– 12273 Czech forms

c© InVID Consortium, 2018 11/44
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Figure 3: SKBViewer screenshot of a Lemon lexical sense.
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– 4579 Chinese/Mandarin forms

Which eventually are attached to:

– 31330 senses

– 57921 lexical entries, of which 34236 have PoS specified

– 342102 lexical forms

Spelling differences will be attached as additional written representations to word forms. As an initial
start, 300 UK spellings were added to the US variant and 235 US spellings added to the UK variant.

We added frequent misspellings obtained from a list of Wikipedia for English and German. 7618
misspellings (for EN and DE only currently) were added.

To use the SKB in improving keyword results, we experimented with the use of two services driven
by the SKB in the first step of story detection: the creation of the keyword graph.

– A Synonym service (REST endpoint) provides for a given term and language a list of sense defi-
nitions and base forms of the lexical entries, such that two or more keywords that carry the same
lexical sense can be merged in the graph. e.g. ’murder’ as input would output, among others,
’assassinate, kill, homicide, polish off, slay, bump off’.

– A Variants index (ElasticSearch sync) provides to the InVID platform for one lexical form a set
of variants of that form (plural/singular, tenses of verbs, declinations of nouns/adjectives, com-
mon misspellings) and a set of lexical senses that can be represented by that form. The idea is
that in the story detection we can query for the variants of any given keyword and get candidate
senses. Based on the other keywords in the story cluster, it may be possible to choose the correct
sense, providing for a better keyword disambiguation. Cluster merging may also be improved since
currently distinct keywords (lexical form) can be disambiguated and mapped to the same lexical
sense.

Keywords which are not aligned to named entities via the RECOGNYZE NER service - labelled by us as
’Non-Entity Keywords’ or NEKs - will eventually be connected through the SKB to reasonably equivalent,
existing LexicalEntry subjects via a seeAlso relation.

The SKBViewer provides a way to inspect the data in the SKB. Currently an alpha version allows to
provide a lexical term and it collects all the senses that are connected to that term. Additionally it shows
all the other lexical entries, forms and written representations and all their properties for these senses.
We plan to extend this to become a SKB Editor where the entries may not only be viewed but (for logged
in users) also edited in order to correct errors or complete details in the dataset.

2.3 Story Clustering
To begin with, we perform hourly calculations over the Twitter news stream of the top keywords in the
data and for each keyword, the top associated keywords. This results in a List of ’SimpleStories’ ( = a
single descriptive keyword + a list of co-occurring keywords). From this, the keyword graph is constructed
as the basis for the clustering, where each cluster should ideally group together keywords for a distinct
and unique news story. Prior to the graph construction, we have added an initial redundancy check
for the keywords. This will eventually be replaced by the use of the Semantic Knowledge Base which
should ensure no redundancy in the keywords in the story clusters. For each keyword we now check for
component matches with already (previously gathered) existing keywords in the input set for the keyword
graph, e.g. ’trump’ is a component term of both ’Donald Trump’ and ’President Trump’. Thus we store
’trump’ (always the shortest common component) as the preferred label for also the n-grams ’Donald
Trump’ and ’President Trump’. So the assumption is, when building the nodes and links of the graph, to
name the nodes ’donald trump’ and ’president trump’ simply ’trump’, so that a link can be established to
both previous mentions of trump and also stories mentioning trump, donald trump and president trump
will be connected.

We also created a debugging environment to test varying the threshold set for the merging of clusters
in the graph. This merge threshold was set at 0.5 in the initial implementation, meaning that there needs
to be a 50% overlap in the unigrams which form the set of keywords in the cluster (i.e. the set of
keywords is seen as a bag of words) for both clusters to be merged. Testing showed that some duplicate
stories could be merged by reducing the merge threshold but of course at the same time this increased
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the chances of merging two stories which were actually distinct (e.g. keywords like ’trump’ and ’usa’
could co-occur for multiple, different stories). We found that the larger the document set from which the
keyword graph was constructed, the more effective a lower merge threshold was in correctly merging
two clusters about the same news story while not merging two clusters about different news stories. As
a result, while we retain the default of 0.5 in the InVID dashboard, in our evaluations we applied the
lower merge threshold of 0.25 for the TOP stories (the stories being generated from ALL documents,
which were in the thousands) whereas the original threshold of 0.5 was retained for the stories filtered
to individual TOPICS (which were in the hundreds).

2.4 Story Labelling
Once the stories are detected, they are created in the sense that the set of keywords within the cluster
are ranked by weight and used in (i) creating a label for the story from the three highest ranked key-
words and (ii) collecting documents for the story based on an ElasticSearch relevance-weighted search
using the keyword set over all documents. Keyword weighting was corrected so that the labels for sto-
ries should be more relevant. Each keyword cluster depicting a story was then used to search for an
initial set of documents in this story by finding documents containing some of the top keywords and to
improve label relevance, an aggregation was performed on this initial document set to retrieve the top
keywords again on this set, which were then used as an updated description for the story. An effect of
the corrected labelling procedure was the appearance of stories with the same label as separate stories
in the dashboard. So we implemented a simple post-clustering step where two stories are merged when
the labels of the two stories overlapped. The corrected labels also meant that we also adapted the
story documents query again to reflect these new description keywords. This lead to a second set of
documents, more relevant to the new descriptive keywords.

2.5 Story Detection Evaluation
We aim to evaluate our current story detection algorithm against its implementation from one year earlier,
to indicate the possible improvements in quality. We also perform an additional evaluation for this year
(and final version of the algorithm) against state of the art story detection tools. This latter evaluation
is restricted by what access we could gain to those tools, some of whom are commercial products and
did not agree to provide us trial log-ins to compare their results with ours. This was the case with
Banjo, Dataminr and Facebook Signal. On the other hand Echosec, Nunki and Spike require an initial
keyword-based search whereas Truthnest requires a specific tweet URL and provides text and user
based verification services. So only EventRegistry could be used to compare detected news events
with InVID; Nunki gave us access to their beta event detection service Signal however it only provides
reverse chronological tweets matching a ’newsworthy’ template similar to our ’Twitter News’ data feed
and no clustering into distinct news stories.

To benchmark the current and final implementation of story detection, we chose to look at its output
on the same data evaluated one year ago in the previous project deliverable. This follows the same
methodology, reported in InVID deliverable D2.2, Section 2.6. We look again at the stories detected for
the period June 19-23, 2017 (top stories from the Twitter Accounts feed). The results are shown in Table
3. Previously we had noted that a major issue of concern was the distinctiveness, which penalises both
merged and split stories in the results. It can be seen that we have improved the values in both correct-
ness and, significantly, distinctiveness. We had now three non-stories compared to five from the previous
run, and had noted already that these all were the result of the tweets of a single news organisation,
which we subsequently removed from our data feed. The results still include this news organisation so
the improved correctness value indicates that we more successfully rank more newsworthy stories more
highly and can in cases remove unnewsworthy clusters from the results. However, the greatest improve-
ment can be seen in the value of distinctiveness jumping from 0.597 to 0.96 over the exact same data.
This is a clear demonstration that our efforts to improve the correct splitting and merging of clusters into
a set of distinct news stories has been significantly effective. Finally, the values for homogeneity and
completeness had already been good in the previous year, yet we could still show an increase in both -
97% correctness and an almost perfect 99% in homogeneity, i.e. that the documents provided for each
story are almost always relevant to that story.

We also want to look at more current news detection. Here, since we do not wish to take any
single news source as a ’ground truth’ for the task, we can compare current news detected by our
algorithm with the news stories provided via the interfaces of other story detection platforms. Here
we can consider precision/recall in the sense of whether we detect newsworthy stories that they do
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Table 3: Our story detection benchmarked against last years results.
LAST year Cluster measures Document relevance measures

Correctness Distinctiveness Homogeneity Completeness
June 19, 2017 1 0.5 0.87 0.84
June 20, 2017 0.9 0.44 0.94 1
June 21, 2017 0.7 0.71 1 1
June 22, 2017 1 0.625 0.92 0.95
June 23, 2017 0.875 0.71 0.91 0.87
Avg over 5 day 0.895 0.597 0.93 0.93

THIS year
June 19, 2017 1 1 1 0.97
June 20, 2017 0.9 0.89 1 1
June 21, 2017 0.9 1 1 1
June 22, 2017 0.9 1 1 1
June 23, 2017 1 0.9 0.94 0.86
Avg over 5 day 0.94 0.96 0.99 0.97

not or they detect newsworthy stories that we do not. As explained above, there is only one story
detection platform available for us to compare to: EventRegistry. Over a period of three days (28-30
May 2018) we took the top 10 stories from the InVID dashboard and the top 10 ’recent events’ from
EventRegistry. We considered for each story list whether all stories are newsworthy (correctness) and
distinct (distinctiveness); we also looked at the top 10 documents from every story (just as InVID sorts
documents by ’relevance’, EventRegistry offers a sorting of documents by ’story centrality’). We also
looked at overlap between the top 10 stories each day, with the caveat that both systems of course
detect many more stories so the absence of a story detected by one system in the list of the other does
not mean the story was not detected. Thus the overlap can only be a measure of the similarity of the
story ranking of both systems, rather than an evaluation of story detection per se.

In Table 4 we show the evaluation of the InVID stories for the three days. The almost perfect values
demonstrate that the improvements demonstrated by the benchmark of last years evaluation are also
consistent with the current output of the InVID dashboard. Comparing it to EventRegistry, it can be said
that they also perform almost perfectly on providing newsworthy events and separating them distinctly;
sharing a 100% correctness score they scored 97% in distinctiveness due to one story duplication on
the third day (where the story label was once in English and once in Russian, suggesting they may
be issues in the cross-lingual translation). In terms of story coverage, the top stories between the
platforms did vary with only between 2 and 5 stories being shared in the top 10 on both on the same
day. EventRegistry ranked sports stories with US sports (basketball, baseball) higher, appearing three
times whereas InVID had cricket twice; InVID had a single football (soccer) story in the top 10 while
EventRegistry had five. EventRegistry also included a story on the Star Wars film Solo twice. InVID
might also detect such stories but they tend to not reach the top 10 when there is other significant news
and should be findable using the Topics (Sports, Arts and Entertainment). It was our feeling that InVID
highlighted more stories of news significance in its top 10, for example on the first day this included the
Storm Alberto in Florida and former President George Bush Sr.’s hospitalization, both of which were
not shown by EventRegistry. Likewise, on May 29 InVID detected the memorial day celebrations at the
Arlington Cemetery and on May 30 the Supreme Court rejecting a challenge to abortion law in Arkansas.
We have already acknowledged that every news platform may have its own focus in the news it provides
and thus it is not possible to say one list of news stories is ’better’ than another. Hence we can only say
that InVID seems to perform just as well as any other story detection tool - while we were unable to test
other competitors, scores of 93-100% already indicate little more that can be perfected.
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Table 4: Story detection comparison for May 2018.
InVID Story Detection Correctness Distinctiveness Homogeneity Completeness
May 28, 2018 1 1 0.94 0.9
May 29, 2018 1 1 0.95 0.95
May 30, 2018 1 0.8 0.98 0.98
Three day average 1 0.93 0.96 0.94

3 Social Media Extraction

We have set up a social media extraction pipeline which is configurable and extendable to support addi-
tional sources. The initial pipeline supported YouTube, DailyMotion and Vimeo APIs. Each component,
as implemented for the platform, is called a ”social media mirror” (previously, other mirrors already ex-
isted in the platform but were focused on retrieval of textual documents). In this section, we consider
how our work on social media extraction compares to the state of the art, i.e. scientific publications on
news video information retrieval as well as current services and tools available to journalists to uncover
current online media (especially on social networks) relevant to (breaking) news stories. We outline the
further work done on social media extraction since the last deliverable and provide an evaluation of this
work based on current video collection in the InVID dashboard, compared to content being discovered
for the same news stories in other discovery tools.

3.1 Relation to State of the Art
Looking for recent scientific publications on news video retrieval from social networks, our own paper
(Nixon et al., 2017) is returned. Indeed, the scientific literature seems to tend to consider video retrieval
as a research subject when it, for example, researches query by visual input (and thus a visual similarity
matching problem). The precision of keyword-based queries to social network APIs has not been a
recent topic. Our own experiments (with single, double and triple keyword queries) were reported in
deliverable D2.1.

Some of the tools considered previously for comparison with our story detection approach also ex-
hibited the functionality of collecting online media about the stories. Some were, as it turned out, lacking
any automatic detection of news stories but acted as content discovery platforms for news where the
user initiated the search. They could then, potentially, be subjects of a comparative evaluation with our
social media extraction approach, whether based on detected stories or text searches. The state of the
art tools that we could compare in terms of news story-based online social media content discovery
(and, for InVID, with a focus on VIDEO retrieval) are: Echosec, Newswhip and Nunki. Neither Banjo,
Dataminr nor Facebook Signal gave us access to their platforms. EventRegistry, considered in the story
detection, only collects news articles and not social media of any type. TruthNest only validates provided
tweets. We compared the videos provided for news stories by the InVID dashboard with those for the
same story from the three competitors in the Evaluation subsection below.

3.2 Query construction
The previous deliverable D2.2, Section 3.3 compared video retrieval based on the keyword-association
pairs (our initial implementation) and on the story labels (the proposed implementation). As reported in
this deliverable (Section 2.2) we have further improved the quality of story labelling. The evaluation of
story detection (Section 2.3) confirmed the greater story breadth that can be provided by using the story
labels to construct the queries (distinctiveness for top stories of 93%). We evaluate again the resulting
relevance of returned video documents in this deliverable. Assured that the switch to using story labels
to query for video documents will ensure appropriate story breadth and depth in video collection, the
switch is planned to be activated in the dashboard in the final phase of the dashboard updating (2nd half
of 2018).

3.3 Information Retrieval sources
We have extended our video sources with Facebook Video and Reddit. Both required different ap-
proaches to add them to the social media extraction. In the case of Facebook, it is not possible to query
the API directly for (public) videos that would match some search term. So we can only identify relevant
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(news-related) videos on the Facebook platform when there is news-related content on other platforms
which link to the Facebook video. We chose to initiate collection based on our Twitter Accounts feed
(professional news accounts). Our approach is to identify links to external Websites in tweets and where
that link is to a Facebook video URL, we queue that URL in a newly developed Facebook Video mirror,
which can query the Facebook API for the video document. However few professional news channels
on Twitter post with Facebook video, preferring the native video or YouTube as platforms. We tested also
with our Twitter News feed (user-generated content around ’breaking news’), however we found the vast
majority of FB video posted there was not newsworthy.

As for Reddit, one can monitor via an API a selected ’subreddit’ (akin to a single channel around a
given topic where any Reddit user can post). Subreddit posts may include video links, often YouTube.
Reddit has also launched its own native video hosting but the majority of video embeds observed in our
tests are still YouTube. So we have concentrated on implementing a queue for a list of YouTube URLs
extracted from subreddits, where we directly access the video metadata via the API. We started with the
subreddits /r/politicalvideos and /r/videos (200 documents per channel and day).

As also observed in the distribution of sources of the video documents provided in the InVID dash-
board sorted by relevance to the news stories, YouTube and then Twitter are definitely the most relevant
sources for news video on social media. DailyMotion, Facebook and Vimeo may contribute some indi-
vidual additions to the news video collection, with the caveat that Facebook is not publicly searchable
and hence much more restricted as a video source, limited to finding Facebook videos already found
and used by professional news outlets.

3.4 Relevance filtering
Monitoring the videos returned for our dynamically generated queries, we noted that there was some
noise generated from certain query terms when they could be more generally interpreted. While the
YouTube API itself does a good job in relevance sorting query results, in those cases certain other
irrelevant videos were being returned as relevant, probably because the videos themselves are popular
on the YouTube platform and hence ’gain’ in relevance for Google’s algorithm. Two examples for this are
’audiobook’ (which for example appears together with political topics) and ’live concert’ (which appears
together with a concert location, which may match a news story location being searched for). We
implemented a filter after the video API responses to remove videos whose title matched these and
similar terms as they were constantly irrelevant to the newsworthy video collection task.

3.5 Social Media Extraction Evaluation
While we did evaluate our information retrieval queries in the past deliverable, we have updated the
story labelling approach and hence we repeat an evaluation of the quality of the resulting queries. As
in the deliverable D2.2, Section 3.3, we will evaluate the ’proposed story based approach’ using the
measurements for precision, accuracy, recall and f-score. We will use the story labels from the top 10
stories from Twitter Accounts in the InVID dashboard for the time period May 28-30 2018 as conjunctive
query inputs. We will test results relevance by querying the YouTube API, using the default result sort by
relevance. Since Web based information retrieval excludes the possibility of knowing the total number of
correct documents, recall in its classical form is no longer a meaningful metric and therefore ’precision
at n’ is commonly used where n provides the cut-off point for the set of documents to evaluate for
relevance. In line with the first page of search results, a standard choice in Web Search evaluation, we
choose n=20. In Table 5 we compare the results from last year on 13 June 2017 (reported in Deliverable
2.2) and the results this year for the dates 28-30 May 2018 (and their average). It can be seen that our
recall value has increased considerably, meaning that when we make a query for a newsworthy story we
are more likely to only get videos that are precisely relevant to that story than video of any newsworthy
story. So while accuracy has remained more or less the same (the proportion of newsworthy video being
collected into the InVID platform is probably still around 80% for YouTube) our precision value - that the
collected video is precisely about the news story we detected - shows an over 20% improvement.

Given the updates made in the past year to collect more relevant videos for each news story and
also to sort them by relevance in the story view, we also evaluate the relevance of the social media
video retrieval for news stories in the InVID Dashboard in comparison to other state of the art tools
for journalists. We gained trial access to a number of other commercial platforms which also provide
functionality to find online social media video for news stories. The three platforms available to us
(Echosec, Newswhip, Nunki) all work with keyword-based search and provide content filters to type and
social network, so that results can be filtered to videos. Just as the default in the InVID dashboard, we
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Table 5: Our social media retrieval tested on the new story labels.

Metric 13 June 2017
value

28 May 2018
value

29 May 2018
value

30 May 2018
value

2018 avg
value

Precision 0.54 0.79 0.7 0.79 0.76
Accuracy 0.82 0.85 0.74 0.84 0.81
Recall 0.64 0.93 0.95 0.94 0.94
F-score 0.59 0.82 0.72 0.81 0.78

set the time range to the last 24 hours and considered for each story detected by InVID the relevance of
the video results on each platform. Note the differences in the social networks from which videos were
retrieved:

– Echosec: Reddit, Vimeo, YouTube

– InVID: DailyMotion, Twitter, Vimeo, YouTube

– Newswhip: Facebook, Twitter, YouTube

– Nunki: Twitter, VKontakte, YouTube

We compared the volume of search results and percentages of relevant video across the same stories
on the InVID dashboard, Echosec and Newswhip. Unfortunately Nunki provided log-in credentials to
us late due to a problem that they had with their office space, so they could not be evaluated with the
other three - for completeness, we looked at Nunki separately on the 6th June. For relevance, we look at
precision at n=10, and note that whereas InVID can sort story results by relevancy, Echosec and Nunki
only support sort by recency, whereas Newswhip uses various sort options where we chose ”highest
velocity” which means video being currently spread (shared) at a higher frequency. We add volume
since it may also be significant HOW MANY videos each platform can return for the current top news
stories. We take absolute totals for search results based on the time restriction of the last 24 hours.
Table 6 shows the direct comparison of relevance and volume for all three platforms over all three days
and their average. Looking at InVID compared to Echosec, which can be considered a state of the art
tool for journalistic discovery of news video on social media, the results are very similar for relevance.
While both tend to provide a significant number of videos for each news story in the past 24 hours, it
can be seen that InVID offers more content on average, which is not only due to the additional sources
(particularly Twitter) but also due to more matching video from YouTube. Comparing to Newswhip, the
relevance figure for them is almost perfect but this must be seen in the context of returning far fewer
video results. To take an example from the 30th of May, ABORTION LAW + ARKANSAS + SUPREME
COURT was a story with 21 videos in the InVID dashboard and 25 videos in Echosec, but Newswhip
returned just 6. With apparently between 5 and 20% of the video coverage of the other two platforms, it
must be acknowledged that a platform with 1000 videos, of which 90% are relevant to the current news,
compared to a platform with perfect relevance but just 100 videos, still means the former has nine times
the amount of video material for a journalist to browse. Nunki was tested separately on 6th June, using
the stories detected by InVID on that day. Here, the experience was comparable to InVID with both the
same or more videos returned for news story searches and 100% precision at n=10 for those stories.
Concluding, it seems that Nunki would be our strongest competitor right now for video discovery around
news stories on social media - however it requires the specific keyword-based search (and it seems the
keywords suggested by InVID’s story detection work very well with it).

Table 6: Comparison of tools for news video retrieval.

Metric 28 May 2018
value

29 May 2018
value

30 May 2018
value

2018 avg
value

Relevance InVID Video 0.91 1 0.8 0.9
Volume InVID Video 1060 728 548
Relevance Ecosec 1 0.81 0.85 0.89
Relevance Ecosec 609 328 309
Volume Newswhip 1 0.94 1 0.98
Relevance Newswhip 52 44 114
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4 Social Media Annotation

4.1 Relation to State of the Art
Image or video concept annotation is a challenging multi-label classification problem that in recent years
is typically addressed using DCNN models that choose a specific DCNN architecture (Simonyan &
Zisserman, 2014; He, Zhang, Ren, & Sun, 2016) and put a multi-label cost function on the top of it (Wei
et al., 2016; M. Wang, Luo, Hong, Tang, & Feng, 2016; Bishay & Patras, 2017). As is the case in other
multi-label problems, there exist relations between the different concepts, and several methods attempt
to utilise/model them so as to improve the performance or reduce the complexity of classification models
that treat each concept independently. These methods can be roughly divided in two main categories. In
the first category, methods that fall under the framework of multi-task learning (MTL) (also investigated in
D2.2), attempt to learn representations or classification models that, at some level, are shared between
the different concepts (tasks) (Argyriou, Evgeniou, & Pontil, 2007; Obozinski & Taskar, 2006; Mousavi
et al., 2014; Evgeniou & Pontil, 2004; Daumé, 2009; Argyriou, Evgeniou, & Pontil, 2008; Zhou, Chen,
& Ye, 2011; Sun, Chen, Liu, & Wu, 2015; Markatopoulou, Mezaris, & Patras, 2016b; Kumar & Daume,
2012; Z. Zhang, Luo, Loy, & Tang, 2014; Markatopoulou, Mezaris, & Patras, 2016a; Yang & Hospedales,
2015). In the second category, methods that fall under the framework of structured-output prediction
attempt to learn models that make multi-dimensional predictions that respect the structure of the output
space using either label constraints or post-processing techniques (Smith, Naphade, & Natsev, 2003;
Weng & Chuang, 2012; J. Deng et al., 2014; Ding, Deng, Murphy, & Neven, 2015; Markatopoulou,
Mezaris, Pittaras, & Patras, 2015; Qi et al., 2007; Yang et al., 2012; Qi et al., 2007; H. Wang, Huang,
& Ding, 2011, 2009; M.-L. Zhang & Zhang, 2010; Lu, Zhang, Zhang, & Xue, 2012; Baumgartner, 2009;
Luo, Zhang, Huang, Gao, & Tian, 2014; Cai, Nie, Cai, & Huang, 2013; Taskar, Guestrin, & Koller, 2003;
J. Deng, Satheesh, Berg, & Li, 2011; Sucar et al., 2014; Schwing & Urtasun, 2015; Z. Deng, Vahdat,
Hu, & Mori, 2015; Zheng, Jayasumana, & et al., 2015; Markatopoulou et al., 2016a). Label constraints
refer to regularizations that are imposed into the learning system in order to exploit label relations (e.g.
correlations) (Qi et al., 2007; Yang et al., 2012; Zhao, Li, & Zhang, 2015; Schwing & Urtasun, 2015;
Z. Deng et al., 2015; Zheng et al., 2015; Markatopoulou et al., 2016a). Post-processing techniques
refer to re-calculating the concept prediction results using either meta-learning classifiers or other re-
weighting schemes (Smith et al., 2003; Weng & Chuang, 2012; J. Deng et al., 2014; Ding et al., 2015;
Markatopoulou et al., 2015). In what follows, we first review works in those two broad categories and
then highlight their relation and differences with the proposed method.

4.1.1 Multi-task Learning

Multi-task Learning (MTL) refers to jointly learning classifiers for many tasks by sharing knowledge
across them so as to improve their accuracy, instead of learning individual models for each task.
Video/image concept annotation can be treated as a MTL problem, where each task is about recog-
nizing one concept. MTL methods can be divided into two broad categories: i) Shallow MTL methods
that focus on shallow linear models and typically require pre-computed features as input, for example
local descriptors or DCNN-based pre-computed features and ii) MTL methods that are an integral part of
deep network architectures. The first category has been extensively reviewed in D2.2. Here we present
methods belonging to the second category.

For a start, DCNNs themselves are MTL models that consist of many layers of feature extractors,
with the bottom layers learning more generic features that are shared across all of the tasks and the
top-most layers being more concept-specific (Yosinski, Clune, Bengio, & Lipson, 2014). Typical DCNN
architectures follow a hard feature/parameter sharing, i.e. each task uses exactly the same weight matrix
for the corresponding layer; and similarly a hard feature/parameter separation, i.e. the last layer (a.k.a.
the classification layer) takes as input the output of the second-last layer and translates it into a set of
concept annotation scores learning weight matrices independently for each task (Yang & Hospedales,
2017; He et al., 2016; Simonyan & Zisserman, 2014). However, more elaborate MTL methods that
introduce soft feature/parameter sharing, i.e. adjusting how much information and across which tasks
should be shared, have been presented. Such methods mainly focus on reformulating existing shallow
linear MTL methods in order to be incorporated in DCNNs. For example, (Yang & Hospedales, 2015)
proposes a two-sided neural network that unifies several shallow linear MTL methods that use a predictor
matrix factorization approach, e.g. w j = V s

>
j (Kumar & Daume, 2012) (for the explanation of these

variables we refer the reader to Section 4.2.2). MTL in deep learning architectures has also been
proposed for facial landmark detection (Z. Zhang et al., 2014) and human pose estimation (Ouyang,
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Chu, & Wang, 2014). In (Z. Zhang et al., 2014) the single task of facial landmark detection is optimized
with the assistance of an arbitrary number of related tasks. This is a special case of the conventional
MTL that typically aims to maximize the performance of all tasks. In (Ouyang et al., 2014), the task of
human detection is learned jointly with the task of body locations estimation, which results in improved
human pose estimation. In (Markatopoulou et al., 2016a) the two-sided neural-network of (Yang &
Hospedales, 2015) is modified and extended, for transferring a network that has been originally trained
on a source image dataset for concept annotation, to a target video dataset and a corresponding new
set of target concepts. The latter is the DMTL LC method presented in D2.2.

Transfer learning is another related problem that uses the knowledge captured in a source domain
in order to learn a target domain without caring about the improvement in the source domain. When
a small-sized dataset is available for training a DCNN then a transfer learning technique is followed,
where a conventional DCNN, e.g. (He et al., 2016), is firstly trained on a large-scale dataset and then
the classification layer is removed, the DCNN is extended by one or more fully-connected layers that are
shared across all of the tasks, and a new classification layer is placed on the top of the last extension
layer (having size equal to the number of concepts that will be learned in the target domain). Then, the
extended network is fine-tuned in the target domain (Pittaras, Markatopoulou, Mezaris, & Patras, 2017)
(the FT3-ex strategy presented in D2.2).

4.1.2 Structured Output Prediction

Structured output prediction refers to methods that exploit semantic relations that may exist between the
concept labels, and has received a lot of attention in the deep learning and the broader machine learning
field. In contrast to MTL that exploits the common structure that task parameters or low-level features
may have across the different tasks, structured output prediction focuses on the semantic relations
that exist at the outputs, e.g. concept correlations. Video/image concept annotation is a multi-label
learning problem, where given a set of concept labels, each keyframe/image is often associated with
more than one label. In most concept annotation datasets, ground-truth annotation is provided without
any accompanying structure information concerning the concept labels; however, in many cases the
concept labels are statistically related. For example, in the TRECVID-SIN video annotation dataset (Over
& et al., 2013), which is one of the datasets used in this study, there are several groups of mutually
exclusive labels, such as indoor -outdoor or nighttime-sun. The dataset also includes several positive
correlations, such as car -vehicle and dog-animal. The automated learning of such relationships can
incorporate useful knowledge into the model, improving the accuracy of the DCNN. In order to do so,
many structured output prediction methods impose some label structural constraints either explicitly, i.e.
using predefined rules that are known for the training dataset, or implicitly, i.e. the model is forced to
discover existing label relations and considers them as label constraints. Existing methods can again be
divided in those that take as input any pre-computed features and those that are tightly integrated with
deep learning architectures.

With respect to the first category, i.e. methods that take as input pre-computed features, two main
sub-categories have appeared in the literature: a) Stacking-based approaches that collect the concept
annotation scores produced either by a baseline set of concept detectors (e.g. SVMs) or by a DCNN
when used as a standalone classifier, and introduce a second learning step in order to refine them, and
b) Inner-learning approaches that follow a single-step learning process, which jointly considers extracted
features and semantic relations. Stacking approaches aim to detect relations across concepts in the
last layer of the stack. In (Smith et al., 2003) concept annotation scores are obtained from individual
concept detectors in the first layer, in order to create a model vector for each shot. These vectors form a
meta-level training set, which is used to train a second layer of independently trained concept detectors.
In (Weng & Chuang, 2012), a graph-based method is proposed that uses the ground-truth annotation to
build decision trees that describe the relations across concepts, separately for each concept, and refines
the initial scores by approximating these graphs. Using external knowledge of label relations, Deng et
al. (J. Deng et al., 2014) proposed a representation, the HEX graph, to express and enforce exclusion,
inclusion and overlap relations between labels. This model was further extended for “soft” label relations
using the Ising model by Ding et al. (Ding et al., 2015). A different approach that outperforms the above
was proposed by (Markatopoulou et al., 2015). There, the authors use model vectors to train multi-
label classification algorithms that explicitly exploit label relations, instead of learning a second round of
independent concept detectors or graph-models. All the above-mentioned approaches implicitly capture
label relations from the meta-level training set of model vectors; as a result, they rely on starting with
good concept probability estimates in the model vectors, otherwise the errors are propagated to the next
layers.
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Inner-learning approaches, on the other hand, use the extracted features and exploit concept rela-
tions in a single learning step. For example, the authors of (Qi et al., 2007) and (Yang et al., 2012)
propose methods that simultaneously learn the relation between visual features and concepts and also
the correlations between concepts. In (Zhao et al., 2015) a joint learning-to-rank approach is proposed,
which naturally combines the benefits of training a DCNN with a structural SVM model that is used for
concept ranking. In (M. Wang et al., 2009) the temporal consistency of concept labels across neighbor-
ing video shots is exploited. While in (Hong et al., 2014) an AdaBoost classifier is trained by carefully
selecting positive and negative correlated concepts that will be used per iteration. However, inner-
learning approaches suffer of computational complexity. For example, (Qi et al., 2007) has complexity at
least quadratic to the number of concepts, making it inapplicable to real video/image concept annotation
problems, where the number of concepts is large (e.g. hundreds or thousands). The LMGE algorithm
(Label correlation Mining with relaxed Graph Embedding) (Yang et al., 2012) is a faster approach with
linear complexity with respect to the number of concepts; however, the complexity of the training process
is about n3, where n refers to the number of training samples. Many more methods can be found in this
category for multi-label image annotation, which explore such label relations to improve the classification
accuracy at the expense of increased computational complexity compared to the stacking-based ones,
e.g.(H. Wang et al., 2011, 2009; M.-L. Zhang & Zhang, 2010; Lu et al., 2012; Baumgartner, 2009; Luo
et al., 2014; Cai et al., 2013; Taskar et al., 2003; J. Deng et al., 2011; Sucar et al., 2014).

With respect to the second category, i.e. methods that are an integral part of DCNN architectures,
structured output prediction techniques have been proposed for application mainly to the pixel-wise
semantic segmentation problem. The most popular approach is to combine a DCNN with a graphical
model (Schwing & Urtasun, 2015), (Z. Deng et al., 2015), (Zheng et al., 2015). For example, in (Schwing
& Urtasun, 2015) a Markov random field is jointly used on top of a DCNN architecture in order to incorpo-
rate the spatial relations and label correlations of the assigned labels on the pixels of an image. Similarly,
in (Zheng et al., 2015) the conditional random field model is formulated as a recurrent neural network
(RNN) and plugged in as part of a DCNN. Structured output prediction for DCNNs has also been pro-
posed for other visual recognition problems, such as group activity recognition (Z. Deng et al., 2015). All
of these methods employ probabilistic inference to correct the marginal probability of each label. In con-
trast to the above methods that use graphical models, in (Markatopoulou et al., 2016a) an auxiliary cost
function that approximates the correlations between the concept labels gets added to the total network
cost. This auxiliary cost function takes the form of a constraint over the task-specific parameters of the
network and is shown to improve its accuracy.

4.2 Video Fragmentation and Conceptual Annotation
In this subsection we describe the developed DCNN (Deep Convolutional Neural Network) architecture
that addresses the problem of video/image concept annotation by exploiting concept relations at two
different levels. At the first level, we build on ideas from multi-task learning, and propose an approach to
learn concept-specific representations that are sparse, linear combinations of representations of latent
concepts. By enforcing the sharing of the latent concept representations, we exploit the implicit relations
between the target concepts. At a second level, we build on ideas from structured output learning,
and propose the introduction, at training time, of a new cost term that explicitly models the correlations
between the concepts. By doing so, we explicitly model the structure in the output space (i.e. the concept
labels). Both of the above are implemented using standard convolutional layers and are incorporated in
a single DCNN architecture that can then be trained end-to-end with standard back-propagation. The
developed approach has been reported in (Markatopoulou, Mezaris, & Patras, 2018).

As discussed in D2.2 the dominant approach for solving the concept-based annotation problem is
training DCNNs in whose architectures the concepts share features up to the very last layer, and then
branch off to T different classification branches (using typically one layer), where T is the number of
concepts (Pittaras et al., 2017). However, in this way, the implicit feature-level relations between con-
cepts, e.g. the way in which concepts such as a car and motorcycle share lower-level features modeling
things like their wheels, are not directly considered. Also, in such architectures, the relations or inter-
dependencies of the concepts at a semantic level, i.e. the fact that two specific concepts may often
appear together or, inversely, the presence of the one may exclude the other, are also not directly taken
into consideration. While some methods have been proposed for exploiting in a more elaborate way
one of these two different types of concept relations, and in D2.2 we presented the DMTL LC method
that implicitly exploits visual and semantic-level concept relations using a two-sided network. Here we
present a single method that jointly exploits visual- and semantic-level concept relations in a unified
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Table 7: Definition of the symbols
Symbols Definitions
x A keyframe/image

y
A vector containing the ground-truth concept annotations
for a keyframe/image

N The number of training keyframes/images
c A concept
T The number of concepts, i.e. number of tasks
i Keyframe/image index, i.e. i = 1...N
j Concept/task index, i.e. j = 1...T

ŷ
A vector containing the concept prediction scores for a
keyframe/image

Lx Latent concept feature vectors of a keyframe/image

S
Concept-specific weight matrix, each column corresponds
to a task containing the coefficients of the linear
combination with Lx

LxS
Concept-specific feature vectors incorporating information
from k latent concept representations

U Concept-specific parameter matrix for the final classification
k The number of latent tasks
σ(.) The sigmoid function

Φ
The concept correlation matrix calculated
from the ground-truth annotated training set

m A cost vector utilized for data balancing
β Regularization parameter
z Normalization factor vector

DCNN architecture. More specifically, in contrast to the DMTL LC method presented in D2.2, our cur-
rent network does not only verify whether a certain concept that is given as input to the one side of the
network is present in the video/image that is given as input to the other side. Instead, it provides scores
for all concepts in the output, similar to classical multi-label DCNNs. Second, explicit concept relations
are introduced by a new cost term, implemented using a set of standard CNN layers that penalize dif-
ferences between the matrix encoding the correlations among the ground-truth labels of the concepts,
and the correlations between the concept label predictions of our network. In this way, we introduce
constraints on the structure of the output space by utilizing the label correlation matrix - this will explicitly
capture, for example, the fact that daytime and nighttime are negatively correlated concepts.

4.2.1 Problem Formulation and Method Overview

We consider a set of concepts C = {c1,c2, ...,cT} and a multi-label training set P = {(xi,yi) : xi ∈X ,yi ∈
{0,1}T×1, i = 1...N}, where xi is a 3 channel keyframe/image, and yi is its ground-truth annotation. A
video/image concept annotation system learns T supervised learning tasks, one for each target concept
c j. More specifically, it learns a real-valued function f : X → Y , where Y = [0,1]T×N could then be
binarized (e.g. thresholded) in order to provide a hard classification result, if needed.

We propose a DCNN architecture that exploits both visual-level and semantic-level concept relations
for video/image concept annotation by building on ideas from MTL and structured output prediction,
respectively. In Fig. 4 (i) we illustrate a typical (Π + 1)-layer DCNN architecture, e.g. ResNet, that
shares all the layers but the last one (steps (a),(b)) (Simonyan & Zisserman, 2014; He et al., 2016); in
Fig. 4 (ii) we illustrate how the typical DCNN architecture of Fig. 4 (i) is extended by one FC extension
layer, which was shown to outperform the typical DCNN architecture when used in transfer learning
problems (Pittaras et al., 2017) (i.e. the FT3-ex strategy of D2.2) (steps (c)-(e)); and finally, in Fig. 4 (iii)
we present the proposed DCNN architecture (steps (f)-(k)). In the next subsections we first introduce the
new FV-MTL approach for learning implicit visual-level concept relations; this is done using the network
layers as shown in Fig. 4 in steps (f) to (i). Second, we introduce the new CCE-LC cost function that
learns explicit semantic-level concept relations, which is done in step (k). CCE-LC predicts structured
outputs from concept correlations that we can acquire from the ground-truth annotations of the training
dataset.
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Figure 4: The developed DCNN architecture for video/image concept-based annotation.

4.2.2 Shared Latent Feature Vectors using Multi-task Learning (FV-MTL)

In our approach, similarly to GO-MTL (Kumar & Daume, 2012), we assume that the parameter vectors
of the tasks that present visual-level concept relations (i.e. defined in GO-MTL as belonging to the same
group) lie in a low-dimensional subspace, thus sharing information; and, at the same time, dissimilar
tasks (i.e. belonging to different groups) may also partially overlap by having one or more bases in
common. Allowing the sharing also between dissimilar tasks is more natural than creating disjoint groups
of task models. In order to do so, we learn T concept-specific feature vectors that are linear combinations
of a small number of latent concept feature vectors that are themselves learned as well. Specifically, our
approach uses a shared latent feature vector Lx ∈ Rd×k for all task models, where the columns of Lx

correspond to d-dimensional feature representations of k latent tasks; and produces T different concept-
specific feature vectors Lxs j, for j = 1...T , where each of them incorporates information from relevant
latent tasks, with s j ∈ Rk×1 being a task-specific weight vector that contains the coefficients of the linear
combination. Each linear combination is assumed to be sparse in Lx, i.e, s j ’s are sparse vectors. In this
way we assume that there exist a small number of latent basis tasks and each concept-specific feature
vector is a linear combination of them. The overlap in the sparsity patterns of any two tasks, (i.e. how
much overlap is observed between two different task-specific weight vectors s j and s j′ , where j 6= j′)
controls the amount of sharing between them.

The above can be implemented in a DCNN architecture by using the network layers depicted in Fig. 4
in steps (f) to (i). Specifically, an input training-set keyframe is processed by a typical DCNN architecture
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(e.g. ResNet) and a fully-connected layer, to produce a shared representation of the keyframe across
all of the tasks (Fig. 4: step (f); this is the same as step (c) in the typical DCNN extension architec-
ture). Subsequently, the output of the fully-connected layer is reshaped to the matrix Lx (Fig. 4: step
(g)). Consequently, the reshaped layer outputs k feature vectors that correspond to k latent concepts.
Those representations are shared between the T concepts. The subsequent layers calculate T concept-
specific feature vectors, where T is the number of the concepts we are interested in detecting. Each
of those feature vectors is a combination of k latent concept feature vectors, with coefficients that are
specific to the concept in question. This is implemented as a 1D convolutional layer on the k feature
masks - in the case that the 1D convolutional layer implements a linear transform, i.e. we do not use
a non-linear activation function, then these two layers implement a feature extraction scheme with a
bilinear factorization of the weight matrix (Fig. 4 step (h)). Once T feature vectors are extracted, then
an additional layer (Fig. 4: step (i)) transforms each of the T feature vectors into T concept annotation
scores, one for each of the concepts that we are set to recognize (Fig. 4: step (j)). The above process
leads to a soft feature sharing, because the latent concept feature vectors adjust how much information
and across which tasks should be shared. By contrast, both the typical DCNN and the DCNN extension
architecture of (Pittaras et al., 2017), also presented in D2.2 as FT3-ex, output a single feature vector
(Fig. 4: step (a) and (d), respectively) that is shared across all of the target concepts and it is subse-
quently hard translated into concept annotation scores independently for each concept (Fig. 4: step (b)
and (e), respectively), as was also discussed in Section 4.1.

Formally, the predicted score for the j-th task (concept) and the i-th datapoint (keyframe/image) is
given by:

ŷi, j = diag(u>j (Lxis j)), (1)

where Lxi is the output of the last fully-connected layer of the right part of Fig. 4 (see step (f)), after
reshaping the calculated vector of dimension 1× (d · k), in order to have a matrix of d rows and k columns
(Fig. 4: step (g)). Specifically, Lxi = reshape(α(L′y

(Π)
i +b)), where L ∈ Rd1×d·k the parameters of the

last fully-connected layer, y(Π)
i ∈ Rd1×1 the output of the previous layer, and α the layer’s activation

functions, e.g. the ReLU. G = {g(π)}Π
π=1 is the set of network parameters for the first Π layers. s j,u j

are the j-th columns of the parameter matrices S ∈ Rk×T and U ∈ Rd×T , respectively. Each s j contains
a task-specific weight vector of the coefficients of the linear combination with the shared latent feature
vector Lxi . This linear combination indicates for each concept which latent tasks describe it. Each u j
contains a concept-specific weight vector that transforms the concept-specific feature vectors LxiS to
concept scores.

Similarly to other DCNN works, we optimize the sigmoid cross entropy between the predicted and
the ground truth labels that is formed as:

λ1i, j = yi, jlogσ(ŷi, j)+(1− yi, j)log(1−σ(ŷi, j)), (2)

where σ(·) refers to the sigmoid function σ(x) = 1/(1+exp(−x)). That is, we optimize Eq. 2 with respect
to the parameters of the network. This is the cost of the classification cost term branch in Fig. 4 and
differs from the GO-MTL cost function (Kumar & Daume, 2012) in the following ways:

First, while GO-MTL aims to approximate the parameter vector of the j-th observed task wj by a
linear combination of a subset of latent tasks wj = V sj , where V ∈ Rd×T is a shared knowledge basis,
our goal is given a keyframe/image i, to learn a new set of concept-specific feature vectors Lxis j, one
per task, that leverage shared properties with all the other tasks. Our assumptions are similar, and we
also use a predictor matrix factorization approach LxiS, however, in a different way: In the proposed
approach, given an input keyframe/image our method transforms it into T different concept-specific
feature vectors that leverage information from a set of latent concept feature vectors using a bilinear
factorization of the weight matrix, as described above. Subsequently, parameter matrix U is used in
order to transform these concept-specific representations to concept scores, i.e. U>(LxiS). Differently,
GO-MTL factorizes the 2D weight matrix that encodes concept-specific features and directly transforms
the image/keyframe into concept scores.

Second, GO-MTL (Kumar & Daume, 2012) uses iterative optimization and shallow linear models to
learn the parameters. For example, in each iteration of the GO-MTL (Kumar & Daume, 2012) method all
parameters except for one are kept fixed and the function is optimized towards the non-fixed parameter.
In our case a complete DCNN architecture is used, which makes it easy to calculate error differentials
per layer w.r.t. its inputs, in order to back-propagate them to previous layers.

Third, the GO-MTL cost function can be optimized with respect either to regression loss (e.g. squared
loss) or binary/multi-class classification loss (e.g. logistic loss), thus ignoring the multi-label nature of
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the problem. In contrast, our method works for any multi-label classification cost (e.g. the sigmoid
cross entropy loss, presented above). It should be noted here that we use the sigmoid function on each
activation separately and as a result the different outputs do not compete with each other (i.e. their sum
does not equal to 1).

To make clear the difference of the proposed architecture from the typical and extension DCNN
architectures (Fig. 4 (i) and (ii), respectively) we set α(Ly

(Π)
i + b) = ∆ and rewrite Eq. 1 as: ŷi, j =

diag(u>j (reshape(∆)s j)).
Similarly, the predicted score for the j-th task and i-th datapoint with respect to the typical and

extension DCNN architecture is given by: ŷT
i, j =w

>T
j (α(y

(Π)
i +b)), and ŷE

i, j =w
>E
j ∆, respectively. The

task-specific weight vector s j used in our method contains the coefficients of the latent task feature
vectors that will be combined with respect to concept j. This is exactly the way that our method achieves
a soft feature sharing separately for each concept, i.e. by letting similar concepts to be described by the
same latent task feature vectors according to s j. In contrast, the other two architectures of Fig. 4 do not
use this linear combination of latent concept feature vectors but let the second-last layer, a single feature
vector, to be shared across all of the concepts, thus, a hard translation into concept scores is performed
independently for each concept.

4.2.3 Label Constraints for Structured Output Prediction

Cross-entropy cost is not adequate for capturing semantic concept relations. In this section we present
an additional cost term that constitutes an effective way to integrate structural information. By structural
information we refer to the inherently available concept correlations in a given ground-truth annotated
collection of training videos/images. Details about the used training datasets are given in Section 4.4.1.
In order to consider this information we firstly calculate the correlation matrix Φ ∈ [−1,1]T×T from the
ground-truth annotated data of the training set. Each position of this matrix corresponds to the φ -
correlation coefficient between two concepts c j, c j′ calculated as:

φ j′, j =
AD−BC

(A+B)(C+D)(A+C)(B+D)
, (3)

where φ j′, j refers to j′-element of the j-th row of the correlation matrix Φ that contains the correlation
between concepts c j′ and c j. A = p(c j∧c j′ |yi, i = 1...N), B = p(c j∧¬c j′ |yi, i = 1...N), C = p(¬c j∧c j′ |yi, i =
1...N), D = p(¬c j ∧¬c j′ |yi, i = 1...N), where p(a|b) refers to the probability of a given b. The logical
operator ∧ expresses conjunction, e.g. c j∧c j′ , means that both c j and c j appear on the image/keyframe,
according to its ground-truth annotations; and ¬ expresses negation, e.g. c j ∧¬c j′ , means that c j′ does
not appear on the image/keyframe.

The proposed auxiliary concept correlation cost term that uses the correlation matrix Φ is formed as
follows:

λ2i, j =
1

T -1

T

∑
j′=1,
j′ 6= j

{
φ j′, j

∥∥σ(ŷi, j)−σ(ŷi, j′)
∥∥2

, if φ j′, j ≥ 0
(−φ j′, j)

∥∥σ(ŷi, j)+σ(ŷi, j′)
∥∥2

,otherwise
(4)

This term works as a label-based constraint and its role is to add a penalty to concepts that are positively
correlated but were assigned with different concept annotation scores. Similarly, it adds a penalty to
concepts that are negative-correlated but were not assigned with opposite annotation scores. Contrarily,
it does not add a penalty to non-correlated concepts.

We can implement the λ2i, j correlation term (Eq. 4) using a set of standard CNN layers, as presented
on the top of the right part of Fig. 4. One matrix layer encodes the correlations between the ground-truth
labels of the concepts (denoted as Φ), and the other matrix layer contains the correlations between the
concept label predictions of our network in the form of squared differences (denoted as Q ∈ RT×T , i.e.
the matrix Q contains the differences of activations from the previous layer). Specifically, the matrix Q
gets multiplied, by element-wise multiplication, with the correlation matrix Φ, i.e. Q ◦Φ. All the rows in
the resulting T ×T matrix are added, which leads to a single row vector.
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4.2.4 FV-MTL with Cost Sigmoid Cross-entropy with Label Constraint (FV-MTL with CCE-LC)

The two cost terms presented in Sections 4.2.2 and 4.2.3, i.e. Eq. 2 and Eq. 4, respectively, can be
added in a single cost function that forms our total FV-MTL with CCE-LC network’s cost as follows:

L =
N

∑
i=1

1
T

T

∑
j=1

mi, j

z j

(
λ1i, j +βλ2i, j

)
(5)

where parameter β controls the importance of concept correlation term.
In the above cost function we introduce the vectormi ∈RT×1 that was originally proposed by (Bishay

& Patras, 2017) to address the problem of class imbalance. Class imbalance is a common problem in
concept annotation, where for most datasets the distribution between negative to positive examples per
concept is highly imbalanced, with the former outnumbering the latter in most cases. This results in bias
of the classifier towards the class (positive or negative) that contains the largest number of samples.
Consequently, we introduce the cost vector mi in our cost function in order to balance the number of
positive to negative examples per concept. Let us denote by p j the number of the positive examples
and n j the number of negative examples for the concept c j. Then, the ratio r j of the negative to positive
examples is computed as:

r j =


n j

p j
, if n j and p j 6= 0

1, otherwise
(6)

We create a weight vector mi = [mi,1, ...,mi,T ], for each training example i.e. for i = 1...N. Where mi, j = 1
if yi, j = 0, mi, j = 0 if yi, j is unlabeled and mi, j = r j if yi, j = 1, where r j is given by Eq. 6, and is different
for each concept j. This weight vector is multiplied element-wise with the cost function. By doing so we
adjust the misclassification cost of positive examples so as to prevent the biasing of the network towards
the negative class when only a few positive examples are available. Furthermore, the normalization
factor z ∈ RT×1 that is introduced in Eq. 5 is calculated as: z = ∑

N
i=1mi , where each position of this

vector, i.e. z j, denotes the sum of the weights for concept c j.
In our overall network architecture, an additional layer is used in order to implement the complete

FV-MTL with CCE-LC cost function, adding the two cost terms (λ1,λ2) and scaling their sum by the m
(Eq., 5). In this way, the complete DCNN architecture learns by considering both the actual ground-truth
annotations and also the concept correlations that can be inferred from it (Fig. 4: step (k)). In contrast,
a typical DCNN architecture simply incorporates knowledge learned from each individual ground-truth-
annotated sample.

4.2.5 Web application for reverse keyframe search

The first version of the developed web application for video fragmentation and reverse keyframe search
was presented in Section 4.1.6 of the deliverable D2.2. This technology enables a user to segment
a single-shot video (which is the most common case for UGVs) into visually and temporally coherent
parts, called sub-shots, using the video sub-shot segmentation algorithm described in Section 4.1.3.2
of the same deliverable. Following, the collection of extracted keyframes can be used for fragment-level
reverse video search on the Web, by utilizing the image search functionality of the Google search engine.
The performance of this web-based tool is offered to the users of the InVID Verification Plugin through
the integrated component for video keyframe extraction and reverse search. As stated in D2.2, the web
application has a complementary role with the near duplicate detection utility of the InVID Verification
Application, which has been presented in Section 4 of the deliverable D3.2. The former allows the
fragment-level reverse search of videos on the Web using the extracted keyframes, while the latter
enables the video-level reverse search of videos within a constantly extendable collection of selected
newsworthy video material.

In D2.2 we listed a number of tools for finding near duplicates of a given image or video. In the
following we provide an update of this collection, by removing a few tools that are no longer active and
adding several new solutions that were released over the last year. The latter indicates the popularity and
attractiveness of image/video-based search and highlights the usefulness of the visual-content-based
searching procedure for performing several media asset management tasks, including the assessment
of the originality and authenticity of a given video. From the technologies discussed in D2.2, the Spotter
technology 1 that, according to its developers, offered functionalities for machine-learning-driven video

1https://spotter.tech/
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reverse search seems to be non-active anymore. The Youtube DataViewer of Amnesty International 2

is still up and running, enabling users to find near duplicates of a given YouTube video. The same goes
for the Custom Reverse Image Search of the IntelTechniques 3 which allows image search to additional
platforms, including Vimeo, Facebook, Vine, Instagram, LiveLeak and Backpage, and exploits the image
search functionality of several search engines, containing Google, Tineye, Yandex, Bing, and Baidu.
However, as stated in D2.2, both of these solutions perform reverse video search based on a limited set
of randomly selected keyframes/thumbnails that has been associated to the video, thus excluding parts
of the video that could enhance the reverse search or be of particular interest to the user. Moreover, the
search is supported only for videos available online, thus making impossible the reverse video search
for a video stored in the user’s machine.

Another (pre-existing) solution that can partially support the retrieval of near duplicates of a video
is the TinEye search engine 4, which enables the online search and retrieval of a given image. The
advantage of this tool is that it offers a (paid) API to anyone who wishes to perform image search
requests in a more automated way instead of providing every time the URL of the image file or uploading
a local copy of the file on the TinEye web application. The limitation of this technology when trying to find
near duplicates of a given video is that it requires the extraction of video frames that should be used as
query images, a process which implies an overhead to the overall procedure. A variation of this platform,
with significantly more restricted functionalities though, is the Karma Decay 5 web application which
allows to perform reverse image search on Reddit.com. Last but not least, three recently developed
platforms that assist the detection and retrieval of images and videos are the Berify, the RevIMG and the
Videntifier. Berify 6 is a paid service that, according to its developers, offers functionalities for image-
driven search of online available images and videos; updates of the searching results are checked and
forwarded to its users on a predefined basis. RevIMG 7 is another non-free solution that offers more
unique functionalities, enabling the user to specify and use a portion of an image to search. However,
the reverse search is performed only within closed collections of images. Videntifier 8 is a visual search
engine which can be used for the retrieval of a given image or video stream (even after being modified),
but similar to RevIMG, the identification of a near duplicate relies on the matching of the given media
item against a closed reference collection of video content.

In contrast to the aforementioned technologies that rely on a pre-selected and limited set of video
thumbnails (Youtube DataViewer, Custom Reverse Image Search), the manual extraction of video frames
for performing reverse image search (TinEye, Karma Decay, Berify), or the creation of collections of
(pre-analyzed) video content (RevIMG, Videntifier), our web application extracts a dynamic number of
keyframes in a way which ensures that all the visually discrete parts of the video are adequately rep-
resented through the extracted set of keyframes. Furthermore, it supports the direct analysis of both
online available videos from several platforms and local copies of a video from the user’s machine with-
out requiring its prior upload to any video sharing platform. In this way, it assists users to quickly discover
the temporal structure of a video, to extract detailed information about the video content and to use this
data in their reverse video search queries.

Regarding the technical aspects and the performance of this technology, a significant number of
improvements have been made on the initial version of the tool presented in D2.2. The applied changes
were based on feedback collected from users that are both internal and external to the InVID consortium.
Internal users provided their recommendations after evaluating the tool during the test and validation
cycles of the project. Following, external users assessed the efficiency of this technology after being
integrated and publicly released in as a component of the InVID Verification Plugin, and made their
suggestions for improvement via the instance feedback channel that is integrated in the plugin. These
improvements include:

– the simplification and beautification of the user interface of the web application (see Fig. 5), by:

◦ removing the provided information about the use of the service from the start page of the tool
(the existence of such extended information in the start page was considered as discouraging
for the user) and placing these details within a new webpage that is accessible by clicking on
the newly added “About this tool” button (left part of Fig. 5);

2https://citizenevidence.amnestyusa.org/
3https://inteltechniques.com/osint/reverse.video.html
4https://tineye.com/
5http://karmadecay.com/
6https://berify.com/
7http://www.revimg.com/
8http://www.videntifier.com
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◦ changing the aesthetics of the user interface in order to give the same “look and feel” with the
other components of the InVID Verification Plugin (right part of Fig. 5);

Figure 5: The new user interface of the web app for video fragmentation and reverse image search.

– the simplification of the use and functionality of the web application (see Fig. 6), by:

◦ removing the integrated video player which has been considered as not too relevant to the
main scope of the tool, i.e. the keyframe-driven reverse search of the analysed video on the
Web (left part of Fig. 6);

◦ directly presenting the analysis results to the user without asking him/her to follow a link to a
different page showing these results (left part of Fig. 6);

◦ making the reverse keyframe search a “one-(right)-click” process, instead of asking the user
to left click on a keyframe and then select “Search Google for this image” (right part of Fig. 6;
the highlighted result leads to the original video about the event);

Figure 6: Direct provision of extracted keyframes and application of reverse image search.

– the optional provision of additional keyframes to the user in order to be utilized for a more extended
search of any prior occurrence of the video on the Web, by clicking on the newly added “Show more
keyframes” button that appears right after the initial collection of extracted keyframes (left part of
Fig. 7); these keyframes correspond to the same video fragments with the initially provided ones,
so they could contain duplicates (right part of Fig. 7);
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– the extension of tool compatibility to additional video platforms by utilizing the video download
mechanism of the REST service for video fragmentation and annotation (the supported platforms
include YouTube, Facebook, Twitter, Instagram, LiveLeak, Vimeo, DailyMotion and Dropbox).

Figure 7: Additional keyframes can be optionally provided to the user for more extended search.

The feedback concerning the performance of this tool, received mainly from the users of the corre-
sponding component of the InVID Verification Plugin, remains very positive and encouraging. According
to the analytics about the use of this web application since the public release of the plugin, more than 900
users have submitted (in total) over 3000 requests, for analysing more than 240 hours of video content.
The functionality of this component enabled the users to debunk a number of fake news that are based
on the re-use of a previously published video. Indicative examples of such fakes and the corresponding
original video sources that were identified with the help of the web application, can be found in Table 8.

Table 8: Fakes debunked using the web app for video fragmentation and reverse image search.
Fake news Claim Date Original source Fact Date
https://www.facebook.com/
100009631064968/videos/
730611413936554/

Muslims attack cars
in Birmingham UK

May
2018 https://www.youtube.com/

watch?v=rAoQTQE YTY
Basel hooligans
attacked Zurich
in cars

May
2018

https://www.youtube.com/
watch?v=DM3fUN4qvp4

Fight of drivers in
Brazil

May
2018

https://twitter.com/
tprincedelamour/status/
843421609159544836

Migrant attacks nurse
in public hospital in
France

Mar.
2017

https://www.youtube.com/
watch?v=CuyfdZKc3TQ

Drunk patient beats up
doctors in Novgorod
hospital in Russia

Feb.
2017

https://twitter.com/kwilli1046
/status/872106123570163712

Attack in Notre
Dame, Paris

Jun.
2017 https://www.youtube.com/

watch?v=W2IA9UwmHCA
Filming World War
Z (movie)

Sep.
2012https://twitter.com/mikethecraigy

/status/877248566384873472
Attack in Brussels
Central Station

Jun.
2017

https://twitter.com/FuegoNugz
/status/905246797123203072

Hurricane Irma in
Barbados, US

Sep.
2017 https://www.youtube.com/

watch? v=0lHDVel-NPw
Hurricane Dolores in
Uruguay

May
2016https://www.youtube.com/

watch?v=fmUEI0L2alY
Hurricane Otto in
Panama

Nov.
2016

4.3 API Layer and Integration with InVID
As described in Sections 4.1.5 and 4.2.5 of D2.2, the supported functionality by the video fragmentation
and annotation component is being made available to the InVID platform and applications through the
API layer of the REST service that hosts the technologies for video segmentation (into scenes, shots
and sub-shots), thumbnail extraction and concept-based video (and video fragment) labeling. Building
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on the system described in D2.2 and guided by the conducted evaluations of this technology during the
iterative test and validation cycles of InVID, over the last 12 months of the project’s life we improved
several aspects of the web service (both in terms of hardware and software) aiming to address the
processing and usage requirements of the InVID technologies that integrate this analysis component.

The video fragmentation and annotation service is being used by:

– the InVID Multimodal Analytics Dashboard, which requires the fragmentation and conceptual an-
notation of the collected video items from the monitored social media platforms;

– the InVID Verification Application, which requests the fragmentation and conceptual annotation of
a video (or a small video collection) under evaluation;

– the InVID Verification Plugin, which utilizes the sub-shot fragmentation functionality of the web
service via the integrated tool for video fragmentation and keyframe-based reverse video search;

– the individual InVID partners who evaluate the performance of this API during the test and valida-
tion cycles of the project.

As a starting point, after establishing the communication between the web service and the aforemen-
tioned integrated technologies of InVID (a process that involved the alignment of the service’s responses
with the formatting demands of other tools and services of the InVID system), we tried to identify par-
ticular requirements and patterns of use, that could guide our efforts for further improvement of this
technology. The analytics regarding the use of the service, that is (reasonably) dominated by the InVID
Multimodal Analytics Dashboard which collects and submits large volumes of video content for analysis
on a daily basis, indicated the necessity to expand the processing capacity of the service in order to
allow the analysis of larger amounts of video content. To address this challenging problem we worked in
collaboration with webLyzard, who is responsible for the development of the InVID Multimodal Analytics
Dashboard, on two different directions:

– webLyzard tried to fine-tune the video collection component of the dashboard, aiming to filter-
out videos that according to their (con-)textual metadata seem to be worthwhile to collect and
annotate but in reality they correspond to documentaries, news shows and videos of first person
video games (a.k.a. “let’s play” videos), thus having extremely low possibility of being newsworthy
UGVs;

– CERTH worked towards the upgrade of the used infrastructure (i.e. processing units/cores) by
the video fragmentation and annotation component, and the establishment of a usage plan that
enables a more time-efficient and balanced use of this service by the individual components and
roles of the InVID ecosystem.

To meet the first goal, i.e. the upgrade of the utilized processing resources, we installed a clone
of the service in another machine (with similar specifications with the initially used one) and we built a
load balancing mechanism who is responsible for distributing the incoming traffic (i.e. analysis requests,
requests about the status of the analysis, the status of the service and the generated analysis results)
in the two machines that now host the service. The load balancer was built on top of the initially utilized
REST service, in a way that makes the applied changes for extending the processing capacity of this
analysis component completely invisible to other technologies that integrate this service. As before,
the base URL of the service is: http://multimedia2.iti.gr:8080 and the access to the service is
permitted only to authorized users with a valid user key. However, the performed upgrade of the used
infrastructure, combined with the improvement of the time performance of the image/video annotation
component, approximately doubled the processing capacity of the web service.

To address the second goal, i.e. to avoid very long waiting times due to uninterrupted use of the
service by the InVID Multimodal Analytics Dashboard and to enable a time-efficient use of the service
by all the different components and roles of InVID, we integrated a mechanism that relies on specific
rules about the priority of an incoming analysis request. These rules are assigned to the different user
keys generated for the needs of the project, and can be summarized as follows:

– 1st level priority is given to analysis requests coming from the InVID Verification Plugin, and the
InVID Verification Application when the processing of a single video is requested;

– 2nd level priority is given to analysis requests coming from the InVID partners who are responsible
to evaluate the API during the test and validation cycles of the project;
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– 3rd level priority is given to analysis requests coming from the InVID Verification Application when
the batch processing of a small video collection is requested;

– 4th level priority is given to analysis requests coming from the InVID Multimodal Analytics Dash-
board when the batch processing of a large video collection is requested.

In addition to the changes described above, a number of software-related improvements on several
other aspects of service use were made. These improvements were decided based on the feedback
collected after the performed test and validation cycles of the project, and include:

– the update of the image/video concept-based labeling component in order to exploit the detection
accuracy and time efficiency of the latest developed concept detection algorithm.

– the modification of the communication protocol between the service and the user that submits an
online video for analysis; an instant check on the existence of the video is performed right after
receiving the analysis request in order to inform the user about any broken URL or non-existing
video file.

– the enhancement of the video fetching mechanism of the service; for this purpose we: a) integrated
another component for video downloading (namely the “youtube-dl” software component) on top
of the previously used one (i.e. the “you-get” software component), b) updated this mechanism in
order to make it less restrictive concerning the format of the Dropbox video URLs, and c) enabled
the automatic update of the used third party components for video downloading; as a consequence
of the above changes, the service now supports the analysis of videos from YouTube, Facebook,
Twitter, DailyMotion, Dropbox, Vimeo, Instagram and LiveLeak.

– the alteration of the service’s strategy for indexing the analysis results of the processed videos, in
a way that permits the analysis of the same video by the different users of the service without any
conflict regarding the availability of the generated results.

– the addition of a new REST call reporting the number of the queued analysis requests and the
priority of a given request (i.e. its position in the queue) that allows other tools and components
of the InVID system to make an estimation concerning the needed time for the completion of the
processing and the generation of the analysis results.

– the update of the process for the generation of the JSON file with the analysis results in order
to include: a) general information about the file (e.g. date-time of generation, expiration time,
service’s version etc.), b) appearance time of the selected thumbnails, c) the top-10 detected
concepts at the video level that can be used as a concept-based summary of the visual content of
the video, and d) the top-30 detected concepts for each video fragment instead of the exhaustive
list of concepts for each fragment; the latter change allowed us to convey the most meaningful and
useful information through the generated JSON file, while reducing remarkably its file-size.

– the enrichment of the service’s status report, in order to provide more detailed information regard-
ing the status of an analysis request and the progress of the performed analysis.

– the immediate removal of any downloaded video right after the completion of its analysis to prevent
the servers to run out of memory (due to the volume of video content submitted for analysis on
a daily basis); the generated analysis results (i.e. JSON file with structured data about the video
fragments and their concept-based annotation, extracted keyframes and selected thumbnails) are
stored in the server and being available for the other components of the InVID platform for 2 weeks
as agreed with the InVID partners.

– the implementation of an internal process that enables the seamless operation of the service even
after a service update or restart.

All the aforementioned changes were properly reflected in the updated documentation of the web
service. The impact of these changes, mainly the ones related to the upgrade of the used infrastructure,
the improvement and update of the image/video concept-based labeling component, and the enhance-
ment of the video downloading mechanism, is highlighted in Table 9 below. As shown in this table,
the processing capacity (expressed in terms of hours of video processed on a daily basis) has been
almost doubled and the service is now capable of analysing more than 110 hours of video content per
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day. Moreover, the fixing of bugs and errors in our software components led to further reduction of the,
already small, number of failures due to errors in analysis. Last but not least, the improvement of the
video mechanism part of the service almost eliminated the failures due to errors in the video fetching
process, while the small number of analysis requests that were not processed due to unsupported video
format or broken URL has been further reduced to 0.15%.

These numbers indicate that the REST service for video fragmentation and annotation is a reliable
analysis component that can adequately and effectively support the processing needs of the InVID
platform and integrated technologies.

Table 9: Comparison of the service’s performance before and after the applied improvements.
Mean daily
processing

capacity

Failure
of video
analysis

Failure of video
downloading
mechanism

Unsupported
video format or

broken URL
Before the
service update

∼65 hours of
video content 0.76% 2.28% 1.15%

After the
service update

∼116 hours of
video content 0.12% 0.01% 0.15%

In the following we briefly summarize the I/O (input/output) of the service to facilitate the understand-
ing of the usage of this analysis component.

As input, the service takes the URL of the video file that needs to be analyzed; this URL can link to
a video file hosted in online repositories (both FTP and HTTP), or found in video/file sharing platforms
and social networks (see the bulleted list above for the currently supported online sources). As output,
the service generates: a) a JSON file with the video fragmentation and annotation analysis results, b)
two collections of image files that correspond to the extracted keyframes for the detected shots and
sub-shots of the video, and c) a collection of image files that correspond to the selected thumbnails for
the video. To submit a video for video fragmentation analysis, the user must commit an HTTP POST
request on http://multimedia2.iti.gr:8080/segmentation, while in the case of video fragmentation
and annotation analysis the HTTP POST request should be committed on http://multimedia2.iti

.gr:8080/segmentation-annotation. The body of the HTTP POST request contains the following
parameters:

– “video url”: the URL of the video to be processed

– “login”, “password”: optional parameters used for authentication checks in case of password-
protected repositories

– “user key”: a unique 32-digits access key that allows access to the service

– “kf num sh”: an optional argument that defines the number of extracted keyframes per video shot
(default value is 3)

– “kf num sb”: an optional argument that defines the number of extracted keyframes per video sub-
shot (default value is 3)

– “thumb num”: an optional argument that defines the number of extracted thumbnails for the video
(default value is 3)

The communication between the web service and the user is synchronous only during the trans-
mission of the call. As reported before, the service checks the existence of the submitted video right
after the receipt of the analysis request, and informs the user about a number of different violated con-
ditions (e.g. wrongly formatted analysis request, non-existing video file, broken video URL) that prevent
the initialization of the analysis. If the file exists, the service proceeds by assigning an identifier to the
analysis request and notifies the user about this identifier, since the latter is necessary for monitoring
the status of the analysis and retrieving the analysis results. The former is performed by committing an
HTTP GET request on http://multimedia2.iti.gr:8080/status/<video id>, where “video id” is the
automatically assigned identifier to the video file. The latter is performed through a set of specific HTTP
GET requests that enable the retrieval of the extracted keyframes and thumbnails of the video (either on
a one-by-one basis or as an entire collection), and the JSON file with the analysis results.
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Table 10: Datasets (and their statistics) used for evaluating concept detection.

Dataset Training
Instances

Testing
Instances

Training set
Concepts

Test set
Concepts

Concept
Cardinality

Label
Cardinality

Missing
Labels

TRECVID-SIN 239495 112677 346 38 3206.3 2.2 294.6
PASCAL-VOC2012 5717 5823 20 20 416.6 1.5 0.0
PASCAL-VOC2007 5011 4952 20 20 379.2 1.4 0.0
NUS-WIDE 161789 107859 81 81 3066.1 1.9 0.0

4.4 Video Fragmentation and Conceptual Annotation Evaluation
This section reports the findings of the conducted evaluations regarding the performance of the devel-
oped approach for concept-based video/image annotation. The accuracy of the generated annotations
was assessed with the help of datasets and metrics that are widely used in international benchmarking
activities, such as the TRECVID SIN task. The time efficiency of the implemented architecture was as-
sessed in terms of needed time for training and testing. Finally the effectiveness of the current algorithm
was compared against other methods from the relevant literature, and the progress made during the last
year is highlighted through the comparison with the algorithms reported in D2.2.

4.4.1 Datasets and Experimental Setup

Our experiments were performed on four large multi-label video/image classification datasets, namely
the TRECVID-SIN 2013 (Over & et al., 2013), the PASCAL-VOC 2007 (Everingham, Van Gool, & et al.,
n.d.), the PASCAL-VOC 2012 (Everingham, Van Gool, Williams, Winn, & Zisserman, n.d.), and the NUS-
WIDE (Chua et al., July 8-10, 2009), presented in Table 10. Label cardinality (i.e. the average number
of concepts presented per image/video shot), concept cardinality (i.e. the average number of positive
images/video shots per concept), and missing labels (i.e. the average number of non-annotated labels
per image/video shot) have been calculated on the training set for each dataset. For assessing concept
annotation performance, the indexing problem as defined in (Over & et al., 2013) was evaluated, i.e.
given a concept, the goal was to retrieve the 2000 video shots (or images, depending on the dataset)
that are mostly related with it.

The TRECVID-SIN 2013 (Over & et al., 2013) dataset consists of approximately 600 and 200 hours of
internet archive videos for training and testing, respectively. The training set is partially annotated with
346 semantic concepts. The test set is evaluated on 38 concepts for which ground-truth annotations
exist, i.e. a subset of the 346 concepts. The PASCAL-VOC 2007 (Everingham, Van Gool, & et al.,
n.d.) dataset consists of 5011 training and validation images and 4952 test images. The PASCAL-
VOC 2012 (Everingham, Van Gool, Williams, et al., n.d.) dataset consists of 22531 images divided into
training, validation and test sets (5717, 5823 and 10991 images, respectively). We used the training
set to train the various methods of our study, and evaluated them on the validation set. We did not use
the original test set because ground-truth annotations are not publicly available for it (the evaluation of
a method on the test set is possible only through the evaluation server provided by the PASCAL-VOC
competition, submissions to which are restricted to two per week). Both for the PASCAL-VOC 2007 and
2012 the images are annotated with 20 object classes. The NUS-WIDE (Chua et al., July 8-10, 2009)
dataset consists of 269648 Flickr images that have been annotated with 81 semantic concepts. We used
a subset of 161789 images for training and the rest of them for testing. Since the available ground-truth
annotations for each of the four datasets are not adequate in number in order to train a deep network
from scratch without over-fitting its parameters, similarly to other studies (Pittaras et al., 2017), we used
transfer learning. I.e. we used as a starting point the ResNet-50 network (He et al., 2016), which was
originally trained on 1000 ImageNet categories (Russakovsky, Deng, & et al., 2015), and fine-tuned its
parameters towards each of these four datasets.

In order to evaluate the methods’ performance in the PASCAL-VOC 2007, 2012 and NUS-WIDE
datasets we used the mean average precision (MAP) measure, while, the mean extended inferred av-
erage precision (MXinfAP) (Yilmaz, Kanoulas, & Aslam, 2008), which is an approximation of MAP, was
used for the TRECVID-SIN dataset. MXinfAP is suitable for the partial ground-truth that accompanies
the latter dataset. Both of these measures are predominantly used in the literature for evaluating the per-
formance of state of the art methods for concept detection, as well as within international benchmarking
activities that assess and compare the performance of such methods (Simonyan & Zisserman, 2014;
Wei et al., 2016; M. Wang et al., 2016).
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Figure 8: MXinfAP (%) for different values of β (Eq 5) for the proposed FV-MTL with CCE-LC cost.

4.4.2 Implementation Details

For the rest of this section, when DCNN training takes place we did it by using the pre-trained ResNet-50
ImageNet network (He et al., 2016) (removing the last classification layer) and fine-tuning it on the target
concept annotations. The network’s learning rate and momentum was set to 10−5 and 0.9, respectively,
whereas the mini-batch size was restricted by our hardware resources and set to 32. Multi-label strat-
ification was used in order to ensure similar distribution of positive examples per class on each batch.
Stochastic gradient descent (SGD) was used as the network’s optimization function. All networks were
trained and implemented in Caffe (Jia et al., 2014). Regarding the proposed method, the new layers
learning rate and momentum were set to 0.1 and 5 ·10−4, respectively, and β was set to 10. This value
for β was chosen based on preliminary experiments on the TRECVID SIN dataset (Fig. 8) that showed
that this is an appropriate value, and also that the proposed approach is not sensitive to the value of β .
The diagonal of the Φ correlation matrix was set to zero. The model parameter values with respect to the
compared methods were either selected experimentally or following the typical heuristics and strategies
proposed in the corresponding works. We conducted our experiments on two NVIDIA TitanX GPUs.

Each trained DCNN was used in two different ways to annotate new images/keyframes with semantic
concepts: a) As a standalone classifier, where each test image/keyframe was forward-propagated by
the network and the network’s output was used as the final class distribution that was assigned to the
image/keyframe. b) As a feature generator, where the training set was once again forward-propagated
by the network, and the values calculated in the last layer of the network were used as feature vectors
to subsequently train one Support Vector Machine (SVM) classifier per concept. Then, each test image
was firstly forward-propagated by the DCNN to extract the features and subsequently was served as
input to the trained SVM classifiers.

4.4.3 Preliminary Experiments - Design Choices

In Table 11 we examine the best way of using the proposed FV-MTL with CCE-LC cost by comparing
different parameters and intermediate versions of them. We performed this set of experiments on the
TRECVID-SIN dataset using as a starting point the ResNet-50 network.

– As a baseline we used the extension strategy proposed in (Pittaras et al., 2017), i.e. the DCNN
architecture illustrated in Fig. 4 (ii). The results are presented in Table 11: (d)). The dimensionality
of the extension layer (Fig. 4: step (c)) is indicated in Table 11: (a). Sigmoid cross-entropy was
used as the network’s cost function.

– We compared the baseline approach with: i) The proposed CCE-LC cost when used on the top
of the baseline DCNN architecture, replacing the sigmoid cross-entropy cost (Table 11: (e)), i.e.
the FV-MTL method was ignored. ii) The proposed FV-MTL with CCE-LC, where for the latter
parameter β was set to 0, i.e. the concept correlation term λ2 in Eq. 5 was ignored (Table 11: (f)).
iii) The complete proposed FV-MTL with CCE-LC cost for β = 10, i.e. both cost terms, λ1 and λ2,
were considered (Table 11: (g)). Each row of Table 11 corresponds to a different dimension of our
FV-MTL first FC layer (shown in Fig. 4: step (f)).

Each of the above DCNN architectures was fine-tuned on the 346 TRECVID-SIN concepts using the
TRECVID development dataset (Over & et al., 2013). Using these results, we assess i) how the number
of the latent tasks k and feature dimensionality d affect FV-MTL (Table 11: (a)-(c)), ii) the usefulness
of exploiting semantic-level (explicit) concept relations using the CCE-LC cost instead of the typical
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Table 11: Performance (MXinfAP, %) for different dimensions of the columns of the Lx matrix (Fig. 4
step (e)) that we used in the experiments.
Lx #columns

d× k
Latent
tasks k

Feature
dimension d

DCNN (extension strategy
(Pittaras et al., 2017)) with STL

sigmoid cross-entropy

Proposed
CCE-LC cost

Proposed FV-MTL
with CCE-LC

(β = 0)

Proposed FV-MTL
with CCE-LC

(β = 10)
(a) (b) (c) (d) (e) (f) (g)
128 4 32 23.18 28.76 30.01 29.43
256 4 64 26.91 30.84 30.50 31.38
512 8 64 28.44 30.95 30.37 31.92

1024 16 64 29.76 31.21 30.25 32.1
2048 32 64 30.95 32.44 31.60 32.83
4096 32 128 31.06 31.94 31.65 32.02
4096 64 64 31.06 31.94 31.71 32.07

Table 12: Comparison of the complete FV-MTL with CCE-LC (for β = 10) and two intermediate versions
of it, with other methods on the three datasets.

Category Method
TRECVID-SIN PASCAL-VOC2007 PASCAL-VOC2012 NUS-WIDE

(a) (b) (c) (d) (e) (f) (g) (h)
direct last layer direct last layer direct last layer direct last layer

i) Baseline
(without fine-tuning)

ResNet-50 (He et al., 2016) as
feature generator 29.21 29.78 83.90 83.76 82.98 83.04 51.30 56.20

ii) Typical DCNN
fine-tuning ResNet-50 (He et al., 2016) 27.35 28.66 76.38 83.06 81.20 82.15 51.17 56.32

iii) DCNNs (extension strategy
(Pittaras et al., 2017)) with

STL cost functions

Hinge-loss 29.08 30.06 78.32 79.23 86.6 87.23 52.80 57.49
Sigmoid cross-entropy 31.06 32.2 80.74 84.97 86.94 86.80 53.94 57.20
CCE (Bishay & Patras, 2017) 31.93 32.52 84.07 84.92 85.52 85.39 54.58 55.0
DWE (M. Wang et al., 2016) 28.03 29.17 77.25 78.12 85.14 86.00 51.10 56.08

iv) MTL for DCNNs
or shallow
linear models

AMTL (Sun et al., 2015) 29.36 30.15 83.15 84.37 83.17 84.05 53.40 54.22
CMTL (Zhou et al., 2011) 29.89 30.45 83.44 84.42 83.55 84.60 51.80 52.40
2-sidedNN (Yang & Hospedales, 2015) 29.91 30.01 83.50 84.53 83.70 84.45 51.97 52.67

v) Structured
outputs

Stacking-LP (Markatopoulou et al., 2015) 30.01 31.05 84.68 85.12 84.25 85.30 51.96 52.98
LMGE (Yang et al., 2012) 30.17 31.24 84.32 85.02 84.52 85.64 53.07 54.62

vi) Joint MTL +
Structured outputs

ELLA LC (Markatopoulou et al., 2016b) 28.15 29.09 81.98 82.84 82.15 83.17 52.40 54.68
DMTL LC (Markatopoulou et al., 2016a) 28.23 31.71 82.01 84.07 82.23 84.30 52.35 54.70

vii) Proposed
CCE-LC cost 32.44 33.55 85.40 86.73 86.32 86.39 56.40 60.73
FV-MTL with
CCE-LC (β = 0) 31.60 32.15 82.21 86.96 87.10 88.51 55.45 54.69

FV-MTL with
CCE-LC (β = 10) 32.83 33.77 85.70 87.00 87.54 88.69 55.54 60.22

sigmoid cross-entropy cost, iii) the usefulness of exploiting visual-level (implicit) concept relations using
the proposed FV-MTL with CCE-LC when ignoring the concept correlation term λ2 in Eq. 5 (Table 11: (f)),
and iv) the usefulness of jointly exploiting visual-level and semantic-level concept relations by adopting
MTL and structured output prediction using the proposed FV-MTL with CCE-LC cost when both cost
terms (λ1,λ2 in Eq. 5) are considered (Table 11: (g)). It should be noted that our proposed FV-MTL
with CCE-LC cost is most beneficial when used on datasets with non-exclusive labels (e.g. TRECVID
SIN, PASCAL-VOC, NUS-WIDE) where CCE-LC can exploit and capture concept correlations across the
labels. Such concept correlations are missing in single-label classification datasets such as ImageNet.

The choice of parameter k, which determines the number of latent tasks, is important because it
determines the amount of sharing between the tasks. If k is very high, the tasks are not forced to
share information with each other. On the other hand, if k is very low, the latent space may shrink
too much. In Table 11 we compare different values for this parameter in order to see how it affects
the proposed FV-MTL method (Table 11: (f), (g)). We observe that the larger the value of k the better
the accuracy of the FV-MTL approach. According to the rest of the results, we observe that structured
output prediction using the proposed CCE-LC cost (Table 11: (e)), and MTL using the proposed FV-MTL
approach (Table 11: (f)) are two different ways to improve concept annotation accuracy, as according
to Table 11 the two methods always outperform the baseline (Table 11: (d)). Jointly using MTL and
structured output prediction, in a DCNN architecture (Table 11: (g)) almost always outperforms all the
other methods, reaching the best result of 32.83% when parameter k equals to 32 and parameter d
equals to 64, i.e. the columns of Lx equal to 2048. One exception is seen in the first row of Table 11,
where we observe a small decrease in performance of β = 10 compared to β = 0. This is due to the low
number of feature dimensions and latent tasks, which are not sufficient for the CCE-LC term to capture
well the correlation information.

4.4.4 Main Findings - Comparisons With Related Methods

Table 12 compares the proposed complete FV-MTL with CCE-LC (for β = 10) with other related methods
on the three datasets. The used metrics are MXinfAP (%) for 38 TRECVID-SIN and MAP (%) for 20

c© InVID Consortium, 2018 35/44



Social media filtering and extraction, pre-processing and annotation, final version D2.3

PASCAL-VOC2007, 20 PASCAL-VOC2012 and 81 NUS-WIDE concepts. In addition, we evaluate the
two intermediate versions of our complete DCNN architecture that were also evaluated in Table 11.
I.e. a) Extension strategy (Pittaras et al., 2017) for DCNNs with the proposed CCE-LC cost, i.e. the
typical complete DCNN architecture illustrated in Fig. 4 replacing the sigmoid cross-entropy cost with
the proposed CCE-LC cost, and b) FV-MTL with CCE-LC for β = 0. We set k equal to 32 and d equal
to 64, which was the pair that reached the best overall MXinfAP according to Table 11; similarly, in the
case that CCE-LC is used alone the dimension of the extension layer was set to 2048. We performed
comparisons with the following methods:

– i) A baseline where we use the ResNet-50 pre-trained network as feature generator; one SVM
classifier per concept was trained using as features either the ResNet’s output or its last FC layer.

– ii) The typical DCNN architecture with sigmoid cross-entropy cost, i.e. the ResNet-50 pre-trained
network fine-tuned on each of the four datasets by simply replacing the classification layer with a
new layer with dimensions that equal to the number of concepts in the target domain as illustrated
in Fig. 4 (i).

– iii) Extension strategy (Pittaras et al., 2017) for DCNNs, i.e. the DCNN architecture illustrated
in Fig. 4 (ii), and four different STL cost functions: a) hinge-loss, b) sigmoid cross-entropy, c)
cost sigmoid cross-entropy (CCE) (Bishay & Patras, 2017), an extended version of (b) that also
addresses the class-imbalance problem, and d) dynamic weighted euclidean loss (DEW) (M. Wang
et al., 2016), an extension of the euclidean loss suitable for multi-label classification giving a greater
penalty to concept prediction scores that have been ranked higher than the negative ground-truth
annotated concepts. The size of the extension layer was set to 4096, according to the findings of
Table 11. This category of methods uses exactly the same architecture with the first intermediate
version of our complete architecture (denoted as a) above), with the difference that each of the
above three cost functions is used instead of the CCE-LC cost.

– iv) MTL, either as an integral part of DCNNs or for shallow linear models: a) AMTL (Sun et
al., 2015), b) CMTL (Zhou et al., 2011) and c) the 2-sided NN that was proposed in (Yang &
Hospedales, 2015) for solving the GO-MTL method objective function (Kumar & Daume, 2012).

– v) Structured output prediction: a) Stacking-LP (Markatopoulou et al., 2015), a two-layer stack-
ing architecture combined with the label power-set algorithm (Markatopoulou et al., 2015). b)
LMGE (Yang et al., 2012), an inner learning approach that uses the extracted features and exploits
concept correlations in a single step.

– vi) Methods jointly using MTL and structured output prediction: a) DMTL LC (Markatopoulou et al.,
2016a), and b) ELLA LC (Markatopoulou et al., 2016b).

We selected all the parameter values for these methods based on the training data, and in accordance
with the recommendations provided in the corresponding papers.

We apply and evaluate all the above methods in two different ways (in a direct analogy to what is
discussed in the last paragraph of Section 4.4.2); the specifics of these depended on whether they are
complete DCNN architectures or shallow models that use pre-computed DCNN features. To the first
category belong the following methods: Typical DCNN fine-tuning (group (ii)), all methods of group (iii)
above, the 2-sided NN of (Yang & Hospedales, 2015), DMTL LC (Markatopoulou et al., 2016a), the
proposed FV-MTL with CCE-LC and the latter two intermediate versions. These methods are used a) as
standalone classifiers, where the direct output of the complete network is evaluated (denoted as “direct”
in Table 12), b) as feature generators, where SVM classifiers are trained on DCNN-based features. In
the latter case, the output of the last layer of the complete trained network for each method was used
as a feature vector to train one SVM per concept (denoted as “last layer” in Table 12). The remaining
methods (that belong to the second category), i.e. the baseline of group (i) above, AMTL (Sun et al.,
2015), CMTL (Zhou et al., 2011), ELLA LC (Markatopoulou et al., 2016b), Stacking-LP (Markatopoulou
et al., 2015) and LMGE (Yang et al., 2012), use the pre-trained ResNet-50 network as feature generator
and the extracted features were used to train each of these methods. The methods specifically used in
our experiments a) the ResNet-50 output layer (denoted as “direct” in Table 12), b) the ResNet-50 last
FC layer (denoted as “last layer” in Table 12).

Table 12 presents the results in terms of MXinfAP for the TRECVID-SIN dataset and in terms of
MAP for the PASCAL-VOC and NUS-WIDE datasets. With respect to the direct output (Table 12:
(a),(c),(e),(g)) we observe that the two intermediate versions of our proposed method perform quite
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Figure 9: Reduction of MXinfAP when only a half and a quarter of the training samples respectively are
used.

well, outperforming the compared methods in the majority of cases. One exception is observed be-
tween the compared extension strategy (Pittaras et al., 2017) with sigmoid cross-entropy cost and the
proposed FV-MTL with CCE-LC for β = 0, where their difference is that the latter also incorporates MTL.
The results present fluctuations concerning which of the two methods performs better, depending on the
dataset. However, jointly combining MTL and structured output prediction, using the proposed FV-MTL
with CCE-LC for β = 10, further improves the concept annotation accuracy and outperforms all the other
previously-published methods across all of the evaluated datasets, reaching the best overall concept
annotation accuracy of 32.83%, 85.70%, 87.54% and 55.54% for TRECVID-SIN, PASCAL-VOC2007,
PASCAL-VOC2012 and NUS-WIDE, respectively. The only exception is the NUS-WIDE dataset, where
our intermediate version of the typical extension strategy with CCE-LC cost presents the best accuracy,
and our complete architecture reaches the second-best performance. It should be noted that we com-
pare our method with very recent methods; even our baseline is the ResNet-50 network that was ranked
first in the ImageNet 2016 competition and our method outperforms it by approximately 3 to 4 percent-
age points. Similarly clear differences can be observed with respect to all the other compared methods.
Even compared to the most recent DCNN with CCE cost (Bishay & Patras, 2017), although the differ-
ences are smaller, we consistently outperform it by approximately 1 to 1.5 percentage points in all three
datasets. Similar conclusions can be reached regarding the results presented in columns (b), (d), (f)
and (h) of Table 12 that refers to the second way of applying the compared methods, as described in the
beginning of this section. We also evaluated the XinfAP per task regarding the proposed FV-MTL with
CCE-LC and the other two best performing methods (i.e. DCNN with sigmoid cross-entropy cost and
DCNN with CCE cost (Bishay & Patras, 2017)) in the TRECVID-SIN dataset. Besides our overall best
result (33.77% - Table 12), our method performs better than these other two well-performing methods
for 25 out of the 38 evaluated concepts.

To investigate the statistical significance of the difference of the results of each method from the best
performing method, i.e. the proposed FV-MTL, we used a paired t-test as suggested by (Blanken, de
Vries, Blok, & Feng, 2005). We found that differences between the proposed FV-MTL with CCE-LC
(β = 10) and all other previously-published methods that we compare with, per column of Table 12, are
significant at 5% significance level.

Finally, we assess the robustness of the proposed and the other two best performing methods (i.e.
Sigmoid cross-entropy, and CCE costs (Pittaras et al., 2017), (Bishay & Patras, 2017)) with respect to
the TRECVID SIN dataset according to Table 12 , when they are trained on smaller datasets for the
same number of concepts. Specifically, Fig. 9 presents the reduction of MXinfAP when each of the
compared methods is trained a) on only half of the keyframes of TRECVID SIN training set and b) on
only a quarter of the keyframes for the same dataset, compared to the complete training set. We observe
that the DCNN with sigmoid cross-entropy cost is affected by the smaller training datasets, as according
to Fig. 9 its concept annotation accuracy is reduced by approximately 6 and 3 percentage points when
the half and quarter training sets are used instead of the complete training set, respectively. In contrast,
the proposed FV-MTL with CCE-LC for β = 10 and its intermediate versions, i.e. CCE-LC cost and
FV-MTL with CCE-LC for β = 0, are robust to smaller training sets, exhibiting only a small reduction of
MXinfAP compared to the case of using the complete training set.
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Table 13: Mean execution training/testing times in hours.

Category Method TRECVID-SIN
training testing

i) Baseline
(without fine-tuning)

ResNet-50 (He et al., 2016) as
feature generator 14.25 2.45

ii) Typical DCNN
fine-tuning ResNet-50 (He et al., 2016) 17.33 2.47

iii) DCNNs (extension strategy
(Pittaras et al., 2017)) with
STL cost functions

Hinge-loss 17.35 2.48
Sigmoid cross-entropy 17.45 2.47
CCE (Bishay & Patras, 2017) 17.75 2.50
DWE (M. Wang et al., 2016) 17.85 2.50

iv) MTL for DCNNs
or shallow
linear models

AMTL (Sun et al., 2015) 14.75 2.50
CMTL (Zhou et al., 2011) 14.85 2.58
2-sidedNN (Yang & Hospedales, 2015) 48.12 6.80

v) Structured
outputs

Stacking-LP (Markatopoulou et al., 2015) 23.15 4.51
LMGE (Yang et al., 2012) 15.17 2.68

vi) Joint MTL +
Structured outputs

ELLA LC (Markatopoulou et al., 2016b) 20.97 2.53
DMTL LC (Markatopoulou et al., 2016a) 49.27 6.84

vii) Proposed
CCE-LC cost 17.75 2.67
FV-MTL with
CCE-LC (β = 0) 17.53 3.17

FV-MTL with
CCE-LC (β = 10) 18.15 3.10

4.4.5 Execution Times

We continue the analysis of our results by assessing the execution times during the training and clas-
sification phase of the different methods compared in this study. Table 13 summarizes the required
execution time in hours for the proposed FV-MTL with CCE-LC for β = 10 and its two intermediate ver-
sions, defined in earlier sections, and also compares it with the rest of the methods. We observe that
the proposed method is not considerably more computationally expensive than DCNN methods that use
STL cost functions. Training of the baseline, AMTL and CMTL methods that use pre-computed features
is a bit faster than the proposed method and its intermediate versions; however, all these previous meth-
ods achieved lower accuracy than the proposed one, according to Table 12. During classification all
the compared methods are executed on very similar time, except for the 2-sidedNN, Stacking-LP and
DMTL LC that are significantly slower. We conclude that our proposed FV-MTL with CCE-LC is faster
than other MTL methods for DCNNs (2-sidedNN, DMTL LC) both during training and classification, and
also comparable in execution time with the second-best performing method of Table 12, i.e. DCNN with
CCE cost (Bishay & Patras, 2017).

4.4.6 Data Augmentation and Comparisons

Recently, improved accuracy has been achieved by image augmentations, i.e. feeding the DCNN with
more than one image crops of the same image. For example, in the PASCAL-VOC2007 dataset this was
shown to improve the MAP by 6 percentage points (Wei et al., 2016). In Table 14 we compare our pro-
posed method with these approaches, however, due to the fact that this is a very computational intensive
and time consuming process we present results only on the PASCAL-VOC2007 dataset. The following
three SoA PASCAL-VOC2007 methods were selected: (i) Simonyan et al. (Simonyan & Zisserman,
2014): A pre-trained ImageNet DCNN is applied on multiple image representations that are extracted
and aggregated across multiple locations and scales. The resulting aggregated image descriptor (using
the second-last layer as image feature representation) is used to train a linear SVM per concept. (ii) Wei
et al. (Wei et al., 2016): Many object segment hypotheses are given as input to a shared DCNN that has
been pre-trained in the ImageNet dataset. The shared network’s output is aggregated with max pooling
in order to return a single multi-label prediction. The shared network is fine-tuned on the PASCAL-VOC
dataset. (iii) Wang et al. (M. Wang et al., 2016): Similar to Wei et al. (Wei et al., 2016), a pre-trained
ImageNet DCNN is fine-tuned using many random crop hypotheses. Stochastic scaling and cropping
over images is performed in this case in order to choose the most useful image crops by proposing
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Table 14: MAP (%) for 20 PASCAL-VOC2007 concepts for methods that use image augmentations.
Method PASCAL-VOC2007
Simonyan et al. (Simonyan & Zisserman, 2014) 89.3
Wei et al. (Wei et al., 2016) 90.9
Wang et al. (M. Wang et al., 2016) 92.5
FV-MTL with CCE-LC (β = 10)
+ augmentations (VGG16) 93.3

FV-MTL with CCE-LC (β = 10)
+ augmentations (ResNet-50) 94.6

Table 15: Comparison of the current method against the algorithms reported in D2.2.

Category Method
TRECVID-SIN PASCAL-VOC2007 PASCAL-VOC2012 NUS-WIDE

(a) (b) (c) (d) (e) (f) (g) (h)
direct last layer direct last layer direct last layer direct last layer

D2.2 method A FT3-ex 31.06 32.2 80.74 84.97 86.94 86.80 53.94 57.20

D2.2 method B DMTL LC 28.23 31.71 82.01 84.07 82.23 84.30 52.35 54.70

Current FV-MTL with
CCE-LC (β = 10) 32.83 33.77 85.70 87.00 87.54 88.69 55.54 60.22

the random crop pooling approach (RCP), instead of object proposal methods such as (van de Sande,
Uijlings, Gevers, & Smeulders, 2011), (Wei et al., 2016). Furthermore, the DWE loss function, also
presented in Table 12, is used on the top of the network. One linear classifier is trained finally for each
object class. Concerning the proposed architecture (FV-MTL with CCE-LC (β = 10)), this is fine-tuned
on 20 random image object segment proposals per image extracted using the RCP method (M. Wang et
al., 2016). Similarly to (Wei et al., 2016) and (M. Wang et al., 2016) a shared DCNN is used to aggregate
the probability scores w.r.t. each proposal using max-pooling and one SVM is trained for each object
class. In this set of experiments, we firstly used the VGG16 (Simonyan & Zisserman, 2014) ImageNet
pre-trained network as the base network of the proposed architecture, in order to have a fair compar-
ison with methods (Simonyan & Zisserman, 2014), (Wei et al., 2016) and (M. Wang et al., 2016) that
also use VGG16. Then, similarly to all of our previous experiments, we repeated this experiment using
ResNet-50 (He et al., 2016) as our architecture’s base network. We observe that the proposed method
once again outperforms all the other compared methods and also that image augmentation is a robust
way of increasing the accuracy of our architecture by approximately 7 percentage points.

4.4.7 Comparison to D2.2

In Tables 15 and 16 we compare the current method (FV-MTL with CCE-LC) with the two approaches
reported in D2.2 , i.e. the FT3-ex algorithm (see Section 4.2.3.2 of D2.2) and the DMTL LC algorithm
(see Section 4.2.3.3 of D2.2), referred in the tables as D2.2 method A and D2.2 method B, respectively.
The used metrics are MXinfAP (%) for 38 TRECVID-SIN and MAP (%) for 20 PASCAL-VOC2007, 20
PASCAL-VOC2012 and 81 NUS-WIDE concepts, using the ImageNet ResNet-50 as the base network.
According to Table 15, the current method outperforms both of the previous methods. At the same
time, the replacement of the previously developed two-sided network (DMTL LC) with a single-side one
(FV-MTL with CCE LC) reduced the processing time and also scaled our method to more concepts
(Table 16). Compared to the extension strategy (D2.2 method A) the execution time has been increased
(Table 16) but important improvement on the accuracy has been achieved (Table 15). In order to further
improve the overall accuracy of our video annotation system we trained the current method using also
the GoogLeNet as the base network. The two trained networks (one based on ResNet-50 and the other
based on GoogLeNet) were combined in terms of arithmetic mean, which reached a MXinfAP of 35.81%
when evaluated on the TRECVID SIN dataset. This is the final configuration that was integrated in our
service for video fragmentation and annotation. The above discussed progress in the performance of
the concept-based annotation component of the service is illustrated in Fig. 10 below.
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Figure 10: The progress, in terms of MXinfAP (%), regarding the performance of the concept-based
annotation component.

Table 16: Mean execution training/testing times in hours.

Category Method TRECVID-SIN
training testing

D2.2 method A FT3-ex 17.45 2.47
D2.2 method B DMTL LC 49.27 6.84

Current FV-MTL with
CCE-LC (β = 10) 18.15 3.10

5 Future Outlook

This deliverable has presented the final updates and results of the InVID work on story detection, social
media retrieval, and video fragmentation and concept-based labeling. We could demonstrate further
improvements in the quality of our story detection, significantly in the area of story distinctiveness which
was a problem we had identified previously. Also in the relevance of the documents retrieved for sto-
ries we were able to show increased precision and have the confidence to further improve the breadth
and depth of collected video material for news stories on social media as a result (when we switch the
video querying approach to the use of the now even more accurate story labels which we produce).
In the video annotation - which involves the fragmentation of the video into visually coherent segments
and the concept-based labeling of these fragments - more training data allowed further fine tuning of
the developed concept detection algorithm, and a more efficient approach evaluated. The web service
for video analysis (i.e. fragmentation and concept-based annotation) has been upgraded to cover the
processing requirements of the different components of the InVID platform. Moreover, it is now better
load balanced and maintained (updated) automatically. The web application for video fragmentation and
reverse keyframe search has been significantly improved according to the feedback collected from in-
ternal (from within InVID) and external users (via the corresponding component of the InVID Verification
Plugin). Evaluations also looked at a comparison with state of the art tools available to newsrooms and
journalists. We found that the tools for which we were able to gain trial access typically did not offer
both the story detection and the social media video retrieval feature. Most of them required the user to
already decide on a news story and determine by themselves the keywords to search for, whereas InVID
offers automatic story detection AND video material collection for each story from social networks. We
found our story detection and our social media retrieval features to be comparable to other state of the
art tools; indeed the focus on video collection meant that InVID often had more links to video for the
selected stories than other platforms used by journalists.

While this is the final InVID deliverable on this work, we can assure that the work is not yet finished.
It will continue to be supported in the InVID user tools- the Dashboard and the Verification App - and
therefore there will be further improvements as needed. For example, we will switch to using the Seman-
tic Knowledge Base to supporting the keyword detection and disambiguation, which will in turn provide
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even clearer results for the story clustering and labelling. We will look at providing metrics in the social
media metadata for the ’reach’ and ’authoritativeness’ (as discussed already in D2.2). Finally, we plan
some further fine-tuning of our method for visual concept detection, as well as the automatic identifica-
tion and removal of blurred and black keyframes that are less valuable for video content representation
and annotation, and for keyframe-driven reverse video search.

MODUL Technology and CERTH will continue to support the respectively provided functionalities
within as well as after the InVID project, since both the InVID Dashboard and the Verification App form
part of future project exploitation efforts.
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