Collaborative Networks for Person Verification

School of Electronic and Computer Engineering, Peking University Yihao Zhang, Wenmin Wang*, Jinzhuo Wang

Overview

- Introduction
- The proposed method
 - Pipeline
 - Architecture
 - Improved Siamese Network (iSN)
 - Deep Discriminative Network (DDN)
 - Collaborative Learning
- Experiments
- Results

Multimedia Verification

Multimedia Verification

Biometrics cues:

.

- face, fingerprint, iris, DNA, etc.
- Different settings of camera **parameters**
- □ Illumination changes across different cameras and capturing time
- Alignment problems caused by the posture and shooting angle
- Body occlusion and background cluttering
- Similarity across different persons

Handcrafted feature + metric learning Deep Methods ...

① The prevalent framework which we based

[11] Y. Dong, L. Zhen, S. Liao, and Stan Z. Li. 2014. Deep Metric Learning for Person Re-identification. In International Conference on Pattern Recognition. 34-39.

② We improve the Siamese Network

1) The prevalent framework which we based

2 We improve the Siamese Network

③ We propose a deep discriminative network

Collaborative Networks for Person Verification

improved Siamese Network (iSN)

Deep Discriminative Network (DDN)

D For similar vectors $\overrightarrow{x_1}$ and $\overrightarrow{y_1}$

- $|\overrightarrow{e_{11}}| = |\overrightarrow{x_1} \overrightarrow{y_1}|$ is supposed to be small
- $|\overrightarrow{m_{11}}| = |\overrightarrow{x_1} + \overrightarrow{y_1}|$ is supposed to be large

D For dissimilar vectors $\overrightarrow{x_2}$ and $\overrightarrow{y_3}$

- $|\overrightarrow{e_{23}}| = |\overrightarrow{x_2} \overrightarrow{y_3}|$ is supposed to be large
- $|\overrightarrow{m_{23}}| = |\overrightarrow{x_2} + \overrightarrow{y_3}|$ is supposed to be small

[41] Y. Yang, S. Liao, Z. Lei, and Stan Z Li. 2016. Large scale similarity learning using similar pairs for person verification. In AAAI. 3655-3661.

improved Siamese Network (iSN)

The effect of summary layer

Table 1: The performance (%) of iSN with and without summary layer after the *commonness* and *difference* components on QMUL GRID dataset.

Type	rank 1	rank 5	rank 10	rank 20
without summary	0.80	4.00	8.00	16.00
with summary	16.00	36.00	51.20	69.60

Deep Discriminative Network (DDN)

Motivation

- Original difference space
- No feature extraction of individual image
- Noise distribution uncovering automatically

Agent Definition

- Independent and complete network
- □ To improve: <u>Competition</u> or <u>Cooperation</u>?
- Collaborative learning strategy:
 - Agents interacting with each other by sharing different experience
 - Commonness and difference components

Collaborative Learning

Experience sharing

Collaborative Learning

□ Agent Definition

- Independent and complete network
- □ To improve: <u>Competition</u> or <u>Cooperation</u>?
- □ Collaborative learning strategy:
 - Agents interacting with each other by sharing different experience
 - Commonness and difference components
 - Learn mistakes from another agents
 - Joint decision of the probability

Collaborative Learning

Learning mistakes from one another

Evaluation on four datasets

CUHK01, CUHK03, PRID2011, QMUL GRID

Implementation Details

- Images resized to 160*60
- Mini-batches of 128
- Learning rate:0.05
- Learning rate decay: 0.0001
- Momentum: 0.9
- Weight decay: 0.0005
- Implemented on Torch7

Datasets: CUHK03

- □ Total pedestrians: 1360
- Total images: 13164
- Source: 6 different surveillance cameras

- □ Training person#:1260
- Testing person#:100
- Additional gallery: NO

Method	Rank 1	Rank 5	Rank 10	Rank 20
eSDC [44]	8.76	24.07	38.28	53.44
LDML [13]	13.51	40.73	52.13	70.81
KISSME [15]	14.17	48.54	52.57	70.53
FPNN [21]	20.65	51.50	66.50	80.00
LOMO + XQDA [22]	52.20	82.23	92.14	96.25
IDLA [1]	54.74	86.50	93.88	98.10
LOMO+MLAPG [23]	57.96	87.09	94.74	98.00
ensembles [30]	62.10	89.10	94.30	97.80
PersonNet [38]	64.80	89.40	94.92	98.20
NullReid [43]	62.55	90.05	94.80	98.10
MTDnet [5]	74.68	95.99	97.47	—
Ours	62.63	91.63	97.00	99.65

Datasets: QMUL GRID

- **Total pedestrians: 1150**
- Total images: 1400
- Source: 8 different surveillance cameras

- □ Training person#:125
- Testing person#:125+775
- □ Additional gallery: 775

Method	Rank 1	Rank 5	Rank 10	Rank 20
LOMO+XQDA [22]	16.56	33.84	41.84	47.68
KEPLER [28]	18.40	39.12	50.24	57.04
Norm X-Corr [33]	19.20	38.40	53.60	66.40
NLML [17]	24.54	35.86	43.53	_
SSDAL+XQDA [32]	22.40	39.20	48.00	—
DR-KISS [34]	20.60	39.30	51.40	—
SCSP [3]	24.24	44.56	54.08	59.68
Ours	32.80	57.60	69.60	80.80

Ablation Experiments

- □ MF: the complete framework
- □ M6: only with DDN
- □ MS: only with **iSN**
- MC: only with commonness component in iSN
- MD: only with difference component in iSN

Datasets: PRID2011

- **Total pedestrians: 934**
- Total images: 1134
- Source: 2 static cameras

- □ Training person#:100
- Testing person#:100+549
- Additional gallery: 549

Method	Rank 1	Rank 5	Rank 10	Rank 20
ITML [9]	12.00	—	36.00	47.00
KISSME [15]	15.00	—	39.00	52.00
kLFDA [39]	22.40	46.60	58.10	_
DML [11]	17.90	37.50	45.90	—
NullReid [43]	29.80	52.90	66.00	76.50
Ensembles [30]	17.90	40.00	50.00	62.00
ImpTrpLoss [7]	22.00	—	47.00	57.00
MTDnet [5]	32.00	51.00	62.00	_
Ours	43.00	76.00	85.00	95.00

Matching results on PRID2011

- First, we propose an improved siamese network for person verification, which is composed by commonness and difference components;
- Second, we propose a deep discriminative network for person verification, which learns how to discriminate the difference in the original difference space;
- Third, a collaborative learning strategy is put forward and different networks are fused into a unified architecture;
- Finally, experiments are conducted on several datasets and our method achieves competitive or superior performance compared to the state-of-the-art methods.

